

!

Andrew Shitov

Perl 6
at a Glance

DeepText — 2017

!

Perl 6 at a Glance
© Andrew Shitov, author, 2017
© Elizabeth Mattijsen, reviewer, 2017

This book is about Perl 6, a programming language of the Perl family. It
covers many basic and in-depth topics of the language and provides the
initial knowledge you need to start working with Perl 6. The book does
not require any previous experience with Perl, although some general
understanding of programming is assumed.

First published in English in January 2017

First published in Russian as a series of articles in the Pragmatic Perl
magazine in 2014–2015, www.pragmaticperl.com

Published by DeepText, Amsterdam
www.deeptext.media

ISBN 978-90-821568-3-6

!

Foreword

Perl 6 is a programming language that emerged in 2000. In December
2015, the stable version 6.c of the language specification was released.

This book is the first one based on the stable version. It is intended to
allow a quick dive into Perl 6 and is dedicated to those readers who are
already familiar with Perl 5 as well as for those who have never used
any Perl before.

If you want to follow the examples in the book and test your own pro-
grammes, download the Rakudo Star compiler from rakudo.org.

!

Contents

Chapter 1

Perl 6 Essentials!
Hello, World! .. 12!
Variables ... 12!

Sigils .. 12!
Introspection ... 14!
Twigils ... 16!
Frequently used special variables ... 18!

Built-in types ... 19!
Typed variables ... 20!
Bool ... 20!
Int ... 21!
Str ... 22!
Array ... 23!
Hash .. 23!

!

Chapter 2

Operators!
Prefixes ... 26!
!, not .. 26!
+ .. 26!
– .. 27!
?, so .. 27!
~ .. 27!
++ ... 28!
++ .. 28!
+^ .. 29!
?^ .. 29!
^ .. 29!
| .. 29!
temp .. 30!
let .. 30!

Postfixes .. 31!
++ .. 31!
++ .. 31!

Method postfixes .. 32!
. .. 32!
.= .. 32!
.^ .. 33!
.? .. 33!
.+ .. 34!
.* .. 34!

Infix operators ... 34!

!

Numerical operators .. 35!
+, +, *, / .. 35!
% .. 35!
div, mod .. 35!
%% .. 36!
+&, +|, +^ .. 36!
?|, ?&, ?^ .. 37!
+<, +> .. 37!
gcd .. 37!
lcm .. 37!
==, != .. 37!
<, >, <=, >= .. 37!
<=> .. 37!

String operators ... 38!
~ .. 38!
x .. 38!
eq, ne .. 38!
lt, gt, le, ge .. 38!
leg .. 39!

Universal comparison operators .. 39!
cmp .. 39!
before, after .. 40!
eqv .. 41!
=== .. 42!
=:= .. 42!
~~ .. 42!

!

List operators .. 43!
xx .. 43!
Z .. 43!
X .. 44!
... .. 44!

Junction operators ... 45!
|, &, ^ .. 45!

Shortcut operators .. 45!
&& .. 45!
|| .. 46!
^^ .. 46!
// .. 46!

Other infix operators .. 47!
min, max .. 47!
??!!! .. 47!
= .. 47!
=> .. 47!
, .. 47!
: .. 48!

Meta-operators .. 48!
Assignment .. 49!
Negation .. 49!
Reverse operator ... 50!
Reduction .. 50!
Cross-operators ... 51!
Zip meta-operators .. 52!

Hyper-operators .. 53!

!

Chapter 3

Code Organization!
Subroutines, or subs .. 58!

Non-value argument passing .. 59!
Typed arguments ... 59!
Optional parameters .. 59!
Default values ... 60!
Named arguments ... 61!
Slurpy parameters and flattening ... 62!
Nested subs ... 64!
Anonymous subs .. 64!

Variables and signatures .. 65!
Lexical variables .. 65!
state variables ... 66!
Dynamic variables ... 67!

Anonymous code blocks .. 67!
Placeholders .. 69!
Function overloading ... 70!

Sub overloading with subtypes .. 71!
Modules .. 72!

module .. 72!
export .. 73!
use .. 73!
import .. 74!
need .. 75!
require .. 76!
Import summary ... 77!

!

Chapter 4

Classes!
Class attributes ... 80!
Class methods ... 81!
Inheritance .. 83!
Multiple inheritance .. 85!
Private (closed) methods ... 86!
Submethods .. 88!
Constructors ... 88

Roles ... 91!

Chapter 5

New Concepts!
Channels ... 96!

Read and write .. 96!
The list method ... 98!
Beyond scalars ... 98!
The closed method ... 99!

Promises .. 101!
Basics ... 101!
Factory methods ... 103!
start .. 103!
in and at .. 105!
anyof and allof .. 106!
then .. 107!
An example ... 108!

!

Chapter 6

Regexes and Grammars!
Regexes ... 112!
The $/ object .. 113!
Grammars ... 114!

Simple parser .. 114!
An interpreter ... 119!

Actions .. 120

AST and attributes .. 125

Calculator ... 129

Appendix!
Unicode .. 138!
Whatever (*) ... 140!
Files .. 144!
Programming for the Internet ... 145!
Database access ... 148!

Conclusion .. 151!

!

Chapter 1
Perl 6 Essentials

!12

Hello, World!
The Perl 6 compiler can either read a programme from a file or from
the content of the +e command line switch. The simplest “Hello,
World!” programme looks like this:

say!"Hello,!Perl!6!";!
!

Save it in a file and run:

$!perl6!hello.pl!
Hello,&Perl&6!&
!

Alternatively, you may use the +e option:

$!perl6!+e'say!"Hello,!Perl!6!"'!

Hello,&Perl&6!&
!

Variables

Sigils
Perl 6 uses sigils to mark variables. The sigils are partially compatible
with the Perl 5 syntax. For instance, scalars, lists and hashes use, re-
spectively, the $, @, and % sigils.

my!$scalar!=!42;!
say!$scalar;!

!

It’s not a surprise that the code prints 42.

Consider the following fragment, which also gives a predictable result
(the square brackets indicate an array):
!
my!@array!=!(10,!20,!30);!

say!@array;!# [10 20 30]!

! 13

Now, let's use the advantages of Perl 6 and rewrite the above code, us-
ing less typing, both fewer characters and less punctuation:

my!@list1!=!<10!20!30>;!

Or even like this:

my!@list2!=!10,!20,!30;!

Similarly, we can omit parenthesis when initializing a hash, leaving the
bare content:

my!%hash!=!!
!!!!'Language'!=>!'Perl',!!

!!!!'Version'!!=>!'6';!
say!%hash;!
!

This small programme prints this (the order of the hash keys in the
output may be different, and you should not rely on it):

{Language&=>&Perl,&Version&=>&6}&

To access the elements of a list or a hash, Perl 6 uses brackets of differ-
ent types. It is important to remember that the sigil always remains the
same. In the following examples, we extract a scalar out of a list and a
hash:

my!@squares!=!0,!1,!4,!9,!14,!25;!

say!@squares[3];!# This prints the 4th element, thus 9

my!%capitals!=!!
!!!!'France'!!=>!'Paris',!!

!!!!'Germany'!=>!'Berlin';!
!
say!%capitals{'Germany'};!

!

An alternative syntax exists for both creating a hash and for accessing
its elements. To understand how it works, examine the next piece of
code:

!14

my!%month+abbrs!=!!

!!!!:jan('January'),!!
!!!!:feb('February'),!!
!!!!:mar('March');!

say!%month+abbrs<mar>;!# prints March!

Naming a variable is a rather interesting thing as Perl 6 allows not only
ASCII letters, numbers, and the underscore character but also lots of
the UTF-8 elements, including the hyphen and apostrophe:

my!$hello+world!=!"Hello,!World";!

say!$hello+world;!
!
my!$don't!=!"Isn’t!it!a!Hello?";!

say!$don't;!
!

my!$привет!=!"A!Cyrillic!Hi!";!
say!$привет;!
!

Would you prefer non-Latin characters in the names of the variables?
Although it may slow down the speed of your typing, because it will
require switching the keyboard layout, using non-Latin characters in
names of variables does not have any performance impact. But if you
do, always think of those developers, who may need to read your code
in the future.

Introspection
Due to the mechanism of introspection, it is easily possible to tell the
type of the data living in a variable (a variable in Perl 6 is often referred
as a container). To do that, call the predefined WHAT method on a varia-
ble. Even if it is a bare scalar, Perl 6 treats it internally as an object;
thus, you may call some methods on it.

For scalars, the result depends on the real type of data residing in a var-
iable. Here is an example (parentheses are part of the output):

! 15

my!$scalar!=!42;!

my!$hello+world!=!"Hello,!World";!
!

say!$scalar.WHAT;!!!!!!# (Int)
say!$hello+world.WHAT;!# (Str)

For those variables, whose names start with the sigils @ and %, the WHAT
method returns the strings (Array) and (Hash).

Try with arrays:

my!@list!=!10,!20,!30;!
my!@squares!=!0,!1,!4,!9,!14,!25;!

say!@list.WHAT;!!!!# (Array)
say!@squares.WHAT;!# (Array)
!

Now with hashes:

my!%hash!=!'Language'!=>!'Perl';!
my!%capitals!=!'France'!=>!'Paris';!

say!%hash.WHAT;!!!!!# (Hash)
say!%capitals.WHAT;!# (Hash)!

The thing, which is returned after a WHAT call, is a so-called type object.
In Perl 6, you should use the === operator to compare these objects.

For instance:

my!$value!=!42;!
say!"OK"!if!$value.WHAT!===!Int;!

There’s an alternative way to check the type of an object residing in a
container — the isa method. Call it on an object, passing the type
name as an argument, and get the answer:

my!$value!=!42;!

say!"OK"!if!$value.isa(Int);!

!16

Twigils
In Perl 6, a variable name may be preceded by either a single-character
sigil, such as $, @ or %, or with a double character sequence. In the latter
case, this is called a twigil. The first character of it means the same
thing that a bare sigil does, while the second one extends the descrip-
tion.

For example, the second character of the twigil can describe the scope
of the variable. Consider *, which symbolises dynamic scope (more on
this in Chapter 3). The following call prints the command line argu-
ments one by one:

.say!for!@*ARGS;!

Here, the @*ARGS array is a global array containing the arguments re-
ceived from the command line (note that this is called ARGS and not
ARGV as in Perl 5). The .say construction is a call of the say method on
a loop variable. If you want to make it more verbose, you would write it
like this:

for!@*ARGS!{!
!!!!$_.say;!

}!

Let’s list a few other useful predefined dynamic variables with the star
in their twigils. The first element of the twigil denotes the type of a
container (thus a scalar, an array, or a hash):

$*PERL contains the Perl version (Perl 6)

$*PID — process identifier
!

$*PROGRAM+NAME — the name of the file with the currently executing
programme (for a one-liner its value is set to -e)
!

$*EXECUTABLE — the path to the interpreter
!

! 17

$*VM — the name of the virtual machine, which your Perl 6 has been
compiled with
!

$*DISTRO — the name and the version of the operation system distri-
bution
!

$*KERNEL — similar, but for the kernel
!

$*CWD — the current working directory
!

$*TZ — the current timezone
!

%*ENV — the environment variables

In my case, the variables above took the following values:

Perl&6&(6.c)&
90177&
twigilAvars.pl&
"/usr/bin/perl6".IO&
moar&(2016.11)&
macosx&(10.10.5)&
darwin&(14.5.0)&
"/Users/ash/Books/Perl&6/code".IO&
{Apple_PubSub_Socket_Render&=>&/private/tmp/com.apple….,&
DISPLAY&=>&/private/tmp/com.apple…,&HISTCONTROL&=>&igA
norespace,&HOME&=>&/Users/ash,&LC_CTYPE&=>&UTFA8,&LOGNAME&
=>&ash&... &

The next group of the predefined variables include those with the ?
character as their twigil. These are “constants” or so-called compile-time
constants, which contain information about the current position of the
programme flow.

$?FILE — the name of the file with a programme (no path included;
contains the string +e for one-liners)

$?LINE — the line number (is set to 1 for one-liners)
!

!18

$?PACKAGE — the name of the current module; on a top level, this is
(GLOBAL)!

$?TABSTOP — the number of spaces in tabs (might be used in heredocs)

Frequently used special variables
The $_ variable is the one similar to that in Perl 5, which is the default
variable containing the current context argument in some cases. Like
any other variable, the $_ is an object in Perl 6, even in the simplest use
cases. For example, the recent example .say!for @*ARGS implicitly
contains the $_.say call. The same effect would give $_.say(),
.say(), or just .say.

This variable is used as a default variable in other cases, for instance,
during the match against regular expressions:

for!@*ARGS!{!
!!!!.say!if!/\d/;!
}!

!

This short code is equivalent to the following, which uses the smart-
match (~~) operator:

for!@*ARGS!{!

!!!!$_.say!if!$_!~~!/\d/;!
}!

The result of matching against a regular expression is available in the $/
variable. To get the matched string, you may call the $/.Str method.
So as to get the substrings, which were caught during the match, indi-
ces are used: $/[2] or, in a simpler form, $2.

"Perl’s!Birthday:!18!December!1987"!~~!!
!!!!/!(\d+)!\s!(\D+)!\s!(\d+)!/;!

say!$/.Str;!
say!$/[$_]!for!0..2;!

! 19

Here, we are looking for a date. In this case, the date is defined as a
sequence of digits \d+, a space \s, the word having no digits \D+, an-
other space \s, and some more digits \d+. If the match succeeded, the
$/.Str slot contains the whole date, while the $/[0], $/[1], and
$/[2] keep their parts (the small square corner brackets are part of the
output to indicate the Match object, see Chapter 6):

18!December!1987!

�18�!

�December�!

�1987�!
!

Finally, the $! variable will contain an error message, for example, the
one that occurred within a try block, or the one that happened while
opening a file:
!
try!{!

!!!!say!42/0;!
}!
say!$!!if!$!;!

If you remove the last line in this programme, nothing will be printed.
This is because the try block masks any error output. Remove the try,
and the error message reappears (the programme, itself, is terminated).

Built-in types
Perl 6 allows using typed variables. To tell the compiler that the varia-
ble is typed, you simply need to name the type while declaring the vari-
able.

Some of the types available in Perl 6 are obvious and do not need
comments:

Bool, Int, Str
Array, Hash, Complex

!20

Some might require a small comment:

Num, Pair, Rat

The Num type is used to handle floating-point variables, and a Pair is a
“key; value” pair. The Rat type introduces rational numbers with nu-
merators and denominators.

Typed variables
This is how you declare a typed variable:

my!Int!$x;!

Here, a scalar container $x may only hold an integer value. Attempts to
assign it a value that is not an integer leads to an error:

my!Int!$x;!

$x!=!"abc";!# Error: Type check failed in assignment to '$x';
!!!!!!!!!!!!# expected 'Int' but got 'Str'

For typecasts, a respective method call is quite handy. Remember that
while $x holds an integer, it is treated as a container object as a whole,
which is why you may use some predefined methods on it. The same
you can do directly on a string. For example:

my!Int!$x;!

$x!=!"123".Int;!# Now this is OK!
say!$x;!# 123
!

Bool
The usage of the Bool variables is straightforward although there are
some details about which you might want to know. The Bool type is a
built-in enumeration and provides two values: True and False (or, in a
full form, Bool::True and Bool::False). It is permissible to incre-
ment or decrement the Boolean variables:
my!$b!=!Bool::True;!

! 21

$b++;!

say!$b;!# prints False!
!

$b!=!Bool::False;!
$b++;!

say!$b;!# True!

The Perl 6 objects (namely, all variables) contain the Bool method,
which converts the value of the variable to one of the two Boolean val-
ues:

say!42.Bool;!# True!
!
my!$pi!=!3.14;!

say!$pi.Bool;!# True!
!

say!0.Bool;!!!!# False!
say!"00".Bool;!# True!
!

Similarly, you may call the Int method on a variable and get the integer
representation of the Boolean values (or values of any other types):

say!Bool::True.Int;!# 1!

Int
The Int type is intended to host integer variables of arbitrary size. For
example, no digit is lost in the following assignment:

my!Int!$x!=!!
!!!!12389147319583948275874801735817503285431532;!

say!$x;!

A special syntax exists for defining integers with an other-than-10 base:

say!:16<D0CF11E0>!

Also, it is allowable to use the underscore character to separate digits so
that big numbers can be read more easily:
!

!22

my!Int!$x!=!735_817_503_285_431_532;!

!

Of course, when you print the value, all the underscores are gone.

On the Int object, you may call some other handy methods, for exam-
ple, to convert a number to a character or to check if the integer in
hand is prime (yes, is+prime is a built-in method!).

my!Int!$a!=!65;!

say!$a.chr;!# A!
!
my!Int!$i!=!17;!

say!$i.is+prime;!# True!
!

say!42.is+prime;!# False!
!

Str
Str is no doubt a string. In Perl 6, there are methods to manipulate
strings. Again, you call them as methods on objects.

my!$str!=!"My!string";!
!

say!$str.lc;!# my string!
say!$str.uc;!# MY STRING!

!

say!$str.index('t');!# 4!
!

Let us now get the length of a string. The naïve attempt to write
$str.length produces an error message. However, a hint is also pro-
vided:

No&such&method&'length'&for&invocant&of&type&'Str'&
Did&you&mean&'elems',&'chars',&'graphs'&or&'codes'?&

Thus, we have a simple and a mono-semantic method to get the length
of a Unicode string.

say!"περλ!6".chars;!# 6!

! 23

Getting used to the new way of working with strings as objects may
take some time. For example, this how you can call the printf as a
method on a string:

"Today!is!%02i!%s!%i\n".printf($day,!$month,!$year);!

Array
The Array variables (i.e., all the variables starting with the @ sigil) are
equipped with a couple of simple but rather useful methods.

my!@a!=!1,!2,!3,!5,!7,!11;!

say!@a.Int;!# array length!
say!@a.Str;!# space-separated values

If you print an array, you get its value as a space-separated list in square
brackets. Alternatively, you may interpolate it in a string.

my!@a!=!1,!2,!3,!5,!7,!11;!
!

say!@a;!!!!!!!!!!!!!!!!!# [1 2 3 5 7 11]&
say!"This!is!@a:!@a[]";!# This is @a: 1 2 3 5 7 11&

Hash
Hashes provide a few methods with clear semantics, for instance:

my!%hash!=!Language!=>!'Perl',!Version!=>!6;!

say!%hash.elems;!!# number of pairs in the hash!
say!%hash.keys;!!!# the list of the keys!
say!%hash.values;!# the list of the values

Here’s the output:

2&
(Version&Language)&
(6&Perl)&

!24

It is possible to iterate not only over the hash keys or values but also
over whole pairs:

for!%hash.pairs!{!
!!!!say!$_.key;!
!!!!say!$_.value;!

}!

The .kv method returns a list containing the alternating keys and values
of the hash:

say!%hash.kv!# (Version 6 Language Perl)!

!

Chapter 2
Operators

!26

The meanings of the many of the operators in Perl 6 are quite obvious
even for those who are not familiar with Perl 5. On the other hand,
sometimes the behaviour of the operator contains some tiny details that
you may not think of. In this chapter, we will list some operators, giving
some comments when it is necessary.

The operators can be divided into a few groups depending on their syn-
tactical properties. These groups are prefixes, infixes, postfixes, and
some other types of operators that are not covered here (such as cir-
cumflex, which is the “hamburger” operator, like a pair of braces).

Prefixes
Prefix operators are those that come in front of their operands. Obvi-
ously, prefix operators require only one operand. In some cases, the
symbol of the operation can be used as an infix operator when it stands
between two operands.

!, not
!!is the Boolean negation operator.

say!!True;!!!!!# False!!
say!!(1!==!2);!# True!!
!

The not operator does the same but has lower precedence.
!

say!not!False;!# True!!

+!
+! is the unary plus operator, which casts its operand to the numerical
context. The action is equivalent to the call of the Numeric method.

my!Str!$price!=!'4'!~!'2';!!
my!Int!$amount!=!+$price;!!
!

! 27

say!$amount;!!!!!!!!# 42!!
say!$price.Numeric;!# 42!!

We will see one of the important use cases of the unary plus in Chapter
6: +$/. That construction converts an object of the Match class that
contains information about the matched part of the regular expression
into a number.

–!
+!is a unary minus, which changes the sign of its operand. Because this
operator silently calls the Numeric method, it can also cast the context,
as it does the unary plus operator.

my!Str!$price!=!'4'!~!'2';!!

say!+$price;!# -42!!

?, so
?!is a unary operator casting the context to a Boolean one by calling the
Bool method on an object.

say!?42;!# True!!
!

The second form, so, is a unary operator with lower precedence.
!

say!so!42;!!!# True!!
say!so!True;!# True!!
say!so!0.0;!!# False!!

~!
~!casts an object to a string. Note that we are now talking about the
prefix or a unary operator. If the tilde is used as an infix (see later in
this chapter about what infixes are), it works as a string concatenating
operator, but it still deals with strings.

! !

!28

my!Str!$a!=!~42;!!

say!$a.WHAT;!# (Str)!!
!

In some cases, the string context can be created implicitly, for example,
when you interpolate a variable inside the double quotes.

++!
++! is a prefix operator of increment. First, an increment is done, and
then a new value is returned.

my!$x!=!41;!!

say!++$x;!# 42!!
!

The increment operation is not limited to working only with numbers.
It can also handle strings.

my!$a!=!'a';!!

say!++$a;!# b!!

A practical example is to increment filenames containing numbers. The
file extension will survive, and only the numerical part will be incre-
mented.

my!$f!=!"file001.txt";!!!
!
++$f;!!

say!$f;!# file002.txt!!!
!

++$f;!!

say!$f;!# file003.txt!!
!

++!
++! is a prefix form of decrement. It works exactly like the ++ prefix
but, of course, makes the operand smaller (whether it be a string or a
number).

my!$x!=!42;!!

say!++$x;!# 41!!

! 29

+^!
+^ is a bitwise negation operator with two’s complement.

my!$x!=!10;!!

my!$y!=!+^$x;!!

say!$y;!# -11 (but not -10)!!

Compare this operator with the following one.

?^!
?^ is a logical negation operator. Please note that this is not a bitwise
negation. First, the argument is converted to a Boolean value, and then
the result is negated.

my!$x!=!10;!!

my!$y!=!?^$x;!!

say!$y;!!!!!!!# False!!
say!$y.WHAT;!!# (Bool)!!

^!
^ is a range-creating operator or the so-called upto operator. It creates a
range (which is an object of the Range type) from 0 up to the given
value (not including it).

.print!for!^5;!# 01234!!

This code is equivalent to the following, where both ends of the range
are explicitly specified:

.print!for!0..4;!# 01234!!
!

|!
|!flattens the compound objects into a list. For example, this operator
should be used when you pass a list to a subroutine, which expects a list
of scalars:

!30

sub!sum($a,!$b)!{!!

!!!!$a!+!$b!!
}!!!
!

my!@data!=!(10,!20);!!

say!sum(|@data);!# 30!!
!

Without the |!operator, the compiler will report an error, because the
subroutine expects two scalars and cannot accept an array as an argu-
ment:

Calling&sum(Positional)&will&never&work&with&declared&sigA
nature&($a,&$b)&

temp!
temp!creates a temporary variable and restores its value at the end of
the scope (like it does the local built-in operator in Perl 5).

my!$x!=!'x';!

{!!
!!!!temp!$x!=!'y';!!

!!!!say!$x;!# y!!
}!!

say!$x;!!!!!# x!!

Compare it with the following operator,!let.

let!
let! is a prefix operator, which is similar to temp, but works correctly
with exceptions. The previous value of the variable will be restored if
the scope was left because of the exception.

my!$var!=!'a';!!
try!{!!

!!!!let!$var!=!'b';!!
!!!!die;!!
}!!

say!$var;!# a!!

! 31

With a die, this example code will print the initial value a. If you
comment out the call of a die, the effect of the assignment to b will
stay, and the variable will contain the value b after the try block.

The let keyword looks similar to the declarators like my and our, but it
is a prefix operator.

Postfixes
Postfix operators are unary operators placed after their single operand.

++!
++! is a postfix increment. The change of the value happens after the
current value is used in the expression.

my!$x!=!42;!!

say!$x++;!# 42!!
say!$x;!!!# 43!!
!

++!
++!is a postfix decrement.

Both postfix and prefix operators magically know how to deal with
numbers in filenames.

my!$filename!=!'file01.txt';!!
for!1..10!{!!
!!!!say!$filename++;!!

}!!

This example prints the list of the filenames with incrementing num-
bers: file01.txt,!file02.txt, ...!file10.txt.

!32

Method postfixes
There are a few syntactical elements in Perl 6, which start with a dot.
These operators might look like a postfix operator, but they all are the
forms of the calling a method on an object. Unlike Perl 5, the dot oper-
ator does not do any string concatenation.

.!

.method!calls a!method!on a variable. This works with both real objects
and with those variables, which are not instances of any class, for ex-
ample, built-in types like integers.

say!"0.0".Numeric;!# 0!!
say!42.Bool;!!!!!!!# True!!!
!
class!C!{!!

!!!!method!m()!{say!"m()"}!!
}!!
my!$c!=!C.new;!!

$c.m();!# m()!!

.=!

.=method! is a mutating call of the method on an object. The call!
$x.=method! does the same as the more verbose assignment! $x!=!
$x.method.

In the following example, the $o container initially holds an object of
the C class, but after $o.=m(), the value will be replaced with an in-
stance of the D class.

! !

! 33

class!D!{!}!!!

!
class!C!{!!
!!!!method!m()!{!!

!!!!!!!!return!D.new;!!
!!!!}!!
}!!!

!
my!$o!=!C.new;!!

say!$o.WHAT;!!# (C)!!!
!

$o.=m();!!

say!$o.WHAT;!!# (D)!!

.^!

.^method!calls a!method on the object’s metaobject. A metaobject is an
instance of the HOW class and contains some additional information
about the object. The following two operations, applied to the $i varia-
ble, are equivalent and print the list of the methods available for the
Int variables.

my!Int!$i;!!

say!$i.^methods();!!
say!$i.HOW.methods($i);!!

.?!

.?method!calls a method if it is defined. If the object does not have a
method with the given name, Nil is returned.

class!C!{!!
!!!!method!m()!{'m'}!!
}!!!

!
my!$c!=!C.new();!!

say!$c.?m();!# m!!

say!$c.?n();!# Nil!!

!34

.+!

.+method! makes an attempt to call all the methods with the given
name on an object. This may be used, for example, when an instance is
a part of the hierarchy of objects and its parent also has a method with
the same name. More on the classes and class hierarchy in Chapter 4.

class!A!{!!
!!!!method!m($x)!{"A::m($x)"}!!
}!!

class!B!is!A!{!!
!!!!method!m($x)!{"B::m($x)"}!!
}!!!

!
my!$o!=!B.new;!!
my!@a!=!$o.+m(7);!!

say!@a;!# Prints [B::m(7) A::m(7)]!!
!

Here, the $o!object has the m method in both its own class B and in its
parent class A. The $o.+m(7) calls both of the methods and puts their
results in a list.

If the method is not defined, an exception will be thrown.

.*!

.*method!calls all the methods with the given method name and returns
a parcel with the results. If the method is not defined, an empty list is
returned. In the rest, it behaves like the .+ operator.

Infix operators
Infix operators are placed in a programme between two operands. The
majority of the infix operators are binary, and there is a single ternary
operator, which expects three operands.

The simplest example of the binary operator is an addition operator +.
On the right and left sides it expects two values, for example, two vari-

! 35

ables: $a!+!$b. It is important to understand that the same symbol or
the same sequence of characters may be either an infix or a prefix op-
erator depending on the context. In the example with a plus, the unary
counterpart is a unary plus operator, which coerces the operand to a
number: +$str.

Numerical operators

+, +, *, /
+,!+,!*, and /!are the operators executing the corresponding arithmeti-
cal operations and do not require any comments. When working with
Perl 6, keep in mind that before the operation is executed, the oper-
ands will be automatically converted to the Numeric type if it is neces-
sary.

%!
%! is the modulo operator returning the remainder of the integer divi-
sion. The operands are cast to integers first if necessary.

div, mod
div! is the integer division operator. If the floating point is truncated,
the result is rounded to the preceding lower integer.

say!10!div!3;!!# 3!!
say!+10!div!3;!# 4!!

mod is another form of the modulo:

say!10!%!3;!!!# 1!!
say!10!mod!3;!# 1!!

!36

Unlike the / and % operators, the div and mod forms do not cast the
operands to the numeric value. Compare the following two examples.

say!10!%!"3";!# 1!!

With a mod operator, an error occurs:

say!10!mod!"3";!!!
!

Calling&'infix:<mod>'&will&never&work&with&argument&types&
(Int,&Str)&&
Expected&any&of:&:(Real&$a,&Real&$b)&&

To satisfy the requirements, you may make the type conversion explic-
itly using either the + prefix operator:

say!10!mod!+"3";!# 1!!

or calling the .Int method:
!
say!10!mod!"3".Int;!# 1!!

%%!
%%! is the so-called divisibility operator: it tells if the integer division
with no remainder is possible for the given pair of operands.

say!10!%%!3;!# False!!
say!12!%%!3;!# True!!

+&, +|, +^
+&,!+|, and!+^ are the bitwise operands for the multiplication, addition,
and XOR operations. The plus character in the operators suggests that
the operands will be converted to the integer type if necessary.

! 37

?|, ?&, ?^
?|,!?&, and ?^!cast the operands to the Boolean type (thus the ? in the
operator name) and do the logical operations of OR, AND, and XOR.

+<, +>
+< and!+>!are the left and right shift operators.

say!8!+<!2;!!!!# 32!!
say!1024!+>!8;!# 4!!
!

gcd!
gcd! calculates the greatest common denominator of the two integer
operands.

say!50!gcd!15;!# 5!!
!

lcm!
lcm!finds the least common multiple value for the given operands.

say!1043!lcm!14;!# 2086!!
!

==, !=
== and!!=! compare the two Numeric operands. Typecast is executed
first if needed.

<, >, <=, >=
<,!>,!<=, and!>=!are the operands to compare Numeric values.

<=>!
<=>!is the operator to compare numbers. It returns the value of the Or+
der type, which can be Order::Less,!Order::More,!or!Order::Same.

!38

String operators

~!
~!does the string concatenation. The dot in Perl 6 is now used for deal-
ing with methods; thus, a new operator for the string concatenation was
required. The tilde was a good candidate because it is also used in other
string-related operators in Perl 6.

say!"a"!~!"b";!# ab!!
!

If necessary, the operator converts its operands to the string type.

say!"N"!~!1;!# N1!!
say!4!~!2;!!!# 42!
!

x!
x!repeats the string the given number of times.

say!"A"!x!5;!# AAAAA!!
!

Non-string values will be converted to strings before the operation.

say!0!x!5;!# 0000!!
!

If the number of repetitions is negative or zero, an empty string is re-
turned.

eq, ne
eq and!ne!compare strings for equality or non-equality, respectively.

lt, gt, le, ge
lt,!gt,!le, and ge!are the operators for comparing strings: less, more,
less or equal, and more or equal. The operands are converted to the
string values if necessary.

! 39

leg!
leg! tells if is the two strings are equal or the left operand is less or
greater than the second one. Its behaviour is similar to what <=> does
for numbers or what the cmp built-in operator does in Perl 5. Like the
cmp in Perl 6, the leg operator returns a value of the Order type.

say!"a"!leg!"b";!!!!!!!!# Less!!
say!"abc"!leg!"b";!!!!!!# Less!!
say!"bc"!leg!"b";!!!!!!!# More!!
say!"abc"!leg!"ABC".lc;!# Same!!
!

Before the operation, the operands are converted to strings if necessary.

say!42!leg!"+42";!# More!!
say!42!leg!"42";!!# Same!!
!

Universal comparison operators
There are a few operators, which can compare both strings and num-
bers, or even compound objects like pairs.

cmp!
cmp!compares two objects and returns a value of the Order type, either
Less, or Same, or More.

say!2!cmp!2;!!!# Same!!
say!2!cmp!2.0;!# Same!!
say!1!cmp!2;!!!# Less!!
say!2!cmp!1;!!!# More!!!
!

say!"a"!cmp!"b";!!!!!!!!# Less!!
say!"abc"!cmp!"b";!!!!!!# Less!!
say!"bc"!cmp!"b";!!!!!!!# More!!
say!"abc"!cmp!"ABC".lc;!# Same!!!
!

! !

!40

my!%a!=!(a!=>!1);!!

my!%b!=!(a!=>!1);!!

say!%a!cmp!%b;!# Same!!
!

When the two operands are of different types (for example, one is a
number and the other is a string) you have to be careful and think that
the compiler may choose from one of the overloaded versions of the
cmp operator. Here is the list of them:

proto!sub!infix:<cmp>(Any,!Any)!!
!!!!returns!Order:D!is!assoc<none>!!

!
multi!sub!infix:<cmp>(Any,!!!!!!!Any)!!
multi!sub!infix:<cmp>(Real:D,!!!!Real:D)!!

multi!sub!infix:<cmp>(Str:D,!!!!!Str:D)!!
multi!sub!infix:<cmp>(Enum:D,!!!!Enum:D)!!

multi!sub!infix:<cmp>(Version:D,!Version:D)!!
!

(The :D!in the declarations is not a smiley; this is a trait indicating that
the argument must be defined.)

So, when you ask to compare a string to a number, the most probable
choice will be the one having the signature with two strings: (Str:D,!
Str:D). So, both operands will be cast to strings:

say!"+42"!cmp!+42;!# Less!!
say!~42!cmp!+42;!!!# Same!!

before, after
before and!after!are the comparison operators, which work with op-
erands of different types. It returns a Boolean value of either True or
False depending on which operand was considered to be ordered earlier
or later.

Type coercion is similar to how it happens with the cmp operator. Re-
member that depending on the data types the comparison of similar-
looking strings or numbers may give different results because the strings

! 41

are compared alphabetically, while the numbers are ordered by their
values:

say!10!before!2;!!!!!!# False!!
say!'10'!before!'2';!!# True!!!
say!10!before!20;!!!!!# True!!
say!'10'!before!'20';!# True!!
!

eqv!
eqv! is an operator that tests the two operands for equivalence. It re-
turns the True value if the operands are of the same type and contain
the same values.

my!$x!=!3;!!

my!$y!=!3;!!

say!$x!eqv!$y;!# True!!
!

An example with a bit more complex data structures:

my!@a!=!(3,!4);!!
my!@b!=!(3,!4,!5);!!

@b.pop;!!

say!@a!eqv!@b;!# True!!
!

Note that because the integer and the floating-point types are different
data types, comparing two equal numbers may give a False result. The
same applies to the comparison with a string containing a numeric val-
ue.

say!42!eqv!42.0;!# False!!
say!42!eqv!"42";!# False!!
!

It is even trickier when one of the operands is of the Rat value.

say!42!eqv!84/2;!!!!!!!# False, 84/2 is Rat!!
say!42!eqv!(84/2).Int;!# True, the value is cast to Int!
!

!42

===!
===!returns a True value if both operands are the same value. Other-
wise, it returns False. This operator is also known as the value identity
operator.
class!I!{!}!!!
!

Three different instances
my!$i!=!I.new;!!
my!$ii!=!I.new;!!
my!$iii!=!I.new;!!!

!
my!@a!=!($i,!$ii,!$iii);!!
for!@a!+>!$a!{!!

!!!!for!@a!+>!$b!{!!
!!!!!!!!say!$a!===!$b;!!

!!!!!!!!# Prints True only when $a and $b are pointing
!!!!!!!!# to the same element of the @a array.
!!!!}!!
}!!

!

=:=!
=:= is the operator to check if the operands refer to the same object. A
Boolean value is returned. The operator is called the container identity
operator.

my!$x!=!42;!!

my!$y!:=!$x;!!!
!

say!$x!=:=!$y;!# True!!
say!$y!=:=!$x;!# True!!
!

~~!
~~! is the smartmatch operator. It compares the objects and tries to
work correctly with the operands of any type (that is why the operator
is called smart).

say!42!~~!42.0;!# True!!
say!42!~~!"42";!# True!!
!

! 43

The result of the smartmatching depends on the operand order.

Consider the following:

say!"42.0"!~~!42;!# True!!
say!42!~~!"42.0";!# False!!
!

That behaviour is explained by how the operator works internally. First,
it calculates the value of the right-hand side operand; then it calls the
ACCEPTS method on it, passing it the variable $_ with a reference to the
left-hand side operand. Each data type defines its own variant of the
ACCEPTS method. For example, it compares strings in the Str class, and
integers in the Int class.

The preceding two examples may be re-written as the following form,
where the asymmetry is clearly visible:

say!42.ACCEPTS("42.0");!# True!!
say!"42.0".ACCEPTS(42);!# False!!
!

List operators

xx!
xx!repeats the list the given number of times.

say!(1,!+1)!xx!2;!# ((1 -1) (1 -1))
!

Like the string x operator, the xx operator returns an empty list if the
number of repetitions is zero or negative.

Z!
Z! is the zip operator. It mixes the content of its two operands like a
zipper does. The operator continues mixing while there are enough data
in both operands.

!44

The code

@c!=!@a!Z!@b;!!
!

is equivalent to the following:

@c!=!((@a[0],!@b[0]),!(@a[1],!@b[1]),!...);!!
!

Consider another example:
!
my!@a!=!^5;!# A range from 0 to 5 (excluding 5)
my!@b!=!'a'!..!'e';!

say!@a!Z!@b;!
!

It reveals the internal structure of the object that will be created after
the Z operation:
!
((0&a)&(1&b)&(2&c)&(3&d)&(4&e))&
!

X!
X!is the cross product operator, which converts the two given lists to a
third one containing all the possible combinations of the elements from
the original lists.

@c!=!@a!X!@b;!!
!

This is the same as the following sequence:

@c!=!((@a[0],!@b[0]),!(@a[0],!@b[1]),!(@a[0],!@b[2]),!...!
(@a[N],!@b[0]),!(@a[N],!@b[1]),!...!(@a[N],!@b[M]));!
!!

The length of the two operands can be different (they are N and M in
the example above).

...!

...!creates a sequence and is called a sequence operator.

my!@list!=!1!...!10;!!

! 45

The operator can also count backwards:

my!@back!=!10!...!1;!!
!

Junction operators

|, &, ^
|,!&, and ^!create the so-called junctions (formerly known in Perl 6 as
quantum superpositions). These objects can be used where a scalar is
used but behave differently; unlike the scalars, the junctions have mul-
tiple values at the same moment in time.

The!|,!&, and!^!operators create, respectively, the junctions of the any,!
all, and!one types.

The value of 4 is one of the listed options
say!"ok"!if!4!==!1|2|3|4|5;!!!!

!

There is no 4 in the list
say!"ok"!if!4!!=!1!&!2!&!3!&!5;!!!!
!

4 repeats twice, thus it is not unique
say!"ok"!unless!4!==!1!^!2!^!2!^!4!^!4!^!5;!!

!

Shortcut operators

&&!
&&!returns the first of the operands, which, after being converted to a
Boolean value, becomes False. If none are False, then the last element
is returned. Please note that the result is not a Boolean value but the
value of one of the operands (unless they are Boolean already).

! !

!46

say!10!&&!0;!# 0!!
say!0!&&!10;!# 0!!!
say!12!&&!3.14!&&!""!&&!"abc";!# empty string!!
!

The operator stops its work as soon as the acceptable value has been
found. The values of the rest of the operands will not be calculated.
That is why the operator belongs to the group of shortcut operators.

||!
||!returns the first operand, which is True in a Boolean context. The
remaining operands are not evaluated.

say!10!||!0;!# 10!!
say!0!||!10;!# 10!
!!

^^!
^^!returns an operand that is True in a Boolean context and that is, at
the same time, the only one in the given list. If nothing is found, Nil is
returned. As soon as the operator sees the second True value, it stops
evaluating the rest, because the result is already known.

say!0!^^!''!^^!"abc"!^^!+0.0;!!# abc!!
say!0!^^!''!^^!"abc"!^^!+10.0;!# Nil!!
!

//!
//!returns the first defined operand. The operator is called a defined-or
operator. It is also is a shortcut operator.

my!$x;!!

my!$y!=!42;!!
my!$z;!!

say!$x!//!$y!//!$z;!# 42!!
!

! 47

Other infix operators

min, max
min and!max!return, correspondently, the minimum and maximum val-
ue of their operands.

say!20!min!10;!!!!!!!!!# 10
say!'three'!max!'two';!# two (sorted alphabetically)!!

??!!!!
??!!!!is the ternary operator. It works as its counterpart ?!: in Perl 5.
The characters are doubled to avoid the mixture with infix operators ?
and !, which change the context of their operands.

say!rand!<!0.5!??!'Yes'!!!!'No';!!

!

=!
=!assigns a value to a variable.

=>!
=>!creates an object of the Pair type. The Pair is a “key; value” combi-
nation, like those used in hashes. In the code, it is not always necessary
to quote the key values.

my!$pair!=!alpha!=>!"one";!!!

!
my!%data!=!jan!=>!31,!feb!=>!28,!mar!=>!31;!!
!

,!
,!creates a List object. Note that this operator, as a few mentioned
above, can be chained to accept more than two operands.

my!$what!=!(1,!2,!3);!!

say!$what.WHAT;!# (List)!!
!

!48

The comma is also used as a separator of parameters passed to the sub-
routine.

To create an empty list, use a pair of parentheses ().

:!

:!marks the left side of it as an invocant to call a method on, when a
method of an object is used. It is easier to understand how it works in
the following example.
!
class!C!{!!
!!!!method!meth($x)!{!!

!!!!!!!!say!"meth($x)";!!
!!!!}!!
}!!

my!$o!=!C.new;!!

meth($o:!42);!# The meth method of the $o object is called,
!!!!!!!!!!!!!!# it prints “meth(42)”!!
!
!

The form meth($o:! 42) is equivalent to the classical form
$o.meth(42). Note that you cannot omit a space following the colon
(otherwise, it will be interpreted as a named argument).

Another common Perl 6 idiom for the use of : is to prevent having pa-
rentheses with method calls. The following two lines of code are equiv-
alent:
!
say!"abcd".substr:!1,!2;!# bc
say!"abcd".substr(1,!2);!# bc!

Meta-operators
The design of the operators in Perl 6 is very consistent. For example, if
you add a new operator to the language, Perl 6 will create a few more
to keep the harmony. In this section, we will talk about the so-called
meta-operators, the operators over other operators.

! 49

Assignment
The assignment meta-operators (=) use the other operators to create
the constructions like!+=,!~=, etc. The action of the newly created oper-
ators is always equivalent to the verbose code.

If you type!$a!op=!$b,!then a compiler will execute the following ac-
tion:!$a!=!$a!op!$b.

That means that $x!+=!2 is equivalent to $x!=!$x!+!2, and $str!~=!
'.' to $str!=!$str!~!'.'.

Let us now create a new custom operator and see if the assignment me-
ta-operator will be available for us. On purpose, I chose quite an out-
standing-looking operator ^_^:

sub!infix:<^_^>($a,!$b)!{!!

!!!!$a!~!'_'!~!$b!!
}!!

!

First, check the simple usage of the new operator with two operands:

say!4!^_^!5;!# 4_5!!
!

Then, let us try the meta-operator form of it:!^_^=:

my!$x!=!'file';!!!

!
$x!^_^=!101;!!

say!$x;!# file_101!!
!

Negation
The negating exclamation mark ! is used to create the next set of meta-
operators. If it is prepended to the existing operator op, you get the
operator that gives you the negated result !op.

say!"no"!if!"abcd"!!~~!"e";!!

!

!50

Reverse operator
The prefix R forms the reverse operator for the infix operators, such as
/ or cmp. The reverse operator does the same as the original but chang-
es the order of the operands.

If necessary, it also changes the operator’s associativity. This matters
when you have more than two operands in a row. For example, in the
code $a!op!$b!$op!$c the operators are calculated left to right; that
is, first, the value of $a is evaluated. With the reverse operator, the val-
ue of $c will be calculated first in the same sequence $a!Rop!$b!Rop!
$c.

say!2!R/!10;!# 5. Same as say 10 / 2!!
!

The reverse operators may be very useful together with the reduction
operators. Here is an example of how you can reverse and join the val-
ues in one go:

say![R~]!'a'..'z';!# zyxwvutsrqponmlkjihgfedcba!!
!

Reduction
For any infix operator op the reduction form [op] also exists. The re-
duction operator takes a list, enrols its values, and inserts the operator
between them.

Examine the example with the [*] reduction operator:

[*]!1..5!!
!

The form above is equivalent to the following line:

1!*!2!*!3!*!4!*!5!!

!

Reduction operators also will be automatically created for the user-
defined operators. For example, create the operator that accumulates
the sum of every pair of operands that it ever received. Notice the

! 51

state variable, which works as it does in regular subs, keeping the val-
ue between the sub calls.

sub!infix:<pairsum>($a,!$b)!{!!
!!!!state!$sum!=!0;!!
!!!!$sum!+=!$a!+!$b;!!

}!!
!

say![pairsum]!1,!2,!3;!# 9!
say![pairsum]!1,!2,!3;!# 27!
!

To understand the result, let’s add the debugging output to the opera-
tor body:
!
sub!infix:<pairsum>($a,!$b)!{!!

!!!!state!$sum!=!0;!
!!!!say!"[$a!+!$b]";!
!!!!$sum!+=!$a!+!$b;!!

}!

Also note that the function returns the last calculated value; that’s why
there is no need for an explicit return!$sum statement.

So, the call of [pairsum]!1,!2,!3 prints the following lines:

[1&+&2]&
[3&+&3]&

It is important to realise that the second call receives the values 3 and
3, not 2 and 3 from the original sub call. This is because in the second
call, the left operand will contain the previously calculated value, which
is also 3 at that moment.

Cross-operators
The cross meta-operator prefix, X, applies an operation to all the possi-
ble combinations of the elements of the operands that are treated in list
context. The result of the cross-operation is also a list.

!52

Here is an example that prints the coordinates for all the cells of a
chess board:

say!'a'..'h'!X~!1..8;!!

Zip meta-operators
The zip meta-operator prefix,!Z, combines the corresponding elements
of its list operands like the zipper does. The record

@a!Z+!@b!!
!

is equivalent to this (in Perl 6, the last element of an array is indexed as
*+1, not just +1; see the details in Appendix):

((@a[0]!+!@b[0]),!(@a[1]!+!@b[1]),!. . .!(@a[*+1]!+!@b[*+1]))!!
!

Notice that the zip meta-operator differs from the Z infix operator.
Compare the output of the following test programme:

my!@a!=!1,!2,!3;!
my!@b!=!10,!20,!30;!
!

say!@a!Z+!@b;!#&(11&22&33)!
say!@a!Z!@b;!!#&((1&10)&(2&20)&(3&30))&

Here is another example with the => operator, which creates pairs:
!
my!@a!=!^5;!

my!@b!=!'a'!..!'e';!
say!@a!Z=>!@b!
!

As you can see, the => operator is used indeed:
!
(0&=>&a&1&=>&b&2&=>&c&3&=>&d&4&=>&e)&
!
The default operator for Z is comma ,. Thus, @a!Z!@!b and @a!Z,!@b
produce the same result.
!
! !

! 53

my!@a!=!^5;!

my!@b!=!'a'!..!'e';!
say!@a!Z,!@b!

!
The output is the same as in the example in the section about list oper-
ators earlier in this chapter.
&

((0&a)&(1&b)&(2&c)&(3&d)&(4&e))
!

Hyper-operators
Hyper-operators modify regular operators in such a way that the opera-
tion is applied to all the element of a list operand. Both unary and bina-
ry operators may be written in the hyper-operator form. To create a
hyper-operator, add a pair of >> and/or << to the operation sign.

Let’s start with a simple unary operator !:

my!@a!=!(True,!False,!True);!!
my!@b!=!!<<!@a;!!

say!@b;!# False True False!!
!

Another example, now with the postfix operator:

my!@a!=!(1,!2,!3);!!
@a>>++;!!

say!@a;!# [2 3 4]

In both examples, an operation was applied to each element of the giv-
en list. Keep in mind that you should avoid spaces around or inside the
hyper-operator because the compiler may be confused otherwise.

my!@a!=!('a',!'b')>>.uc;!!

You cannot type ('a',!'b')!>>.!uc!

say!@a;!# [A B]!!!

!54

Hyper-operators use the angle brackets, and it is possible to make four
different combinations and directions of them:

>>+>>!<<+<<!<<+>>!>>+<<!!
!

The direction of the double brackets changes the result of the hyper-
operation. If both operands are of the same length, the symmetrical
forms work the same:

my!@a!=!(1,!2,!3)!>>+<<!(4,!5,!6);!!
say!@a;!# [5 7 9]!!
!
my!@b!=!(1,!2,!3)!<<+>>!(4,!5,!6);!!
say!@b;!# [5 7 9]!!
!

When the lengths of the lists in operands are different, the direction of
arrows indicates whether the compiler needs to extend the shortest
operand so that there are enough elements to make the operation with
all the elements of the longer list.

The simplest case is a combination of a list and a scalar:

say((1,!2,!3)!>>+>>!1);!# (2 3 4)!!
!

The scalar 1 will be repeated three times.

In the next example, we have two lists, but the second one is shorter.

my!@a!=!(1,!2,!3,!4)!>>+>>!(1,!+1);!!

say!@a;!# [2 1 4 3]!!
!

Now, the second list was repeated twice and the left array was in fact
added to (1,!+1,!1,!+1). So as you see, the sharp end of the arrows
points to the shorter operand.

If you reverse the order or the operands, you should also change the
direction of the hyper-operator:

! !

! 55

my!@b!=!(1,!+1)!<<+<<!(1,!2,!3,!4);!!

say!@b;!# [2 1 4 3]!!
!

If the list length is not known, use the form of the hyper-operator,
where both arrows are pointing outside:!<<+>>.

my!@a!=!(1,!+1)!<<+>>!(1,!2,!3,!4);!!

say!@a;!# [2 1 4 3]!!!
!

my!@b!=!(1,!2,!3,!4)!<<+>>!(1,!+1);!!

say!@b;!# [2 1 4 3]!!
!

It is not possible to use the operator >>+<<!because it expects that both
operands are of the same length, and if they are not, then a runtime
error occurs:

Lists&on&either&side&of&nonAdwimmy&hyperop&of&infix:<+>&
are¬&of&the&same&length&
!

Finally, it is possible to use non-ASCII characters and use the French
quotes instead of the pair of angle brackets:

say((1,2)!»+«!(3,4));!# (4 6)!

!

!

Chapter 3
Code Organization

!58

Subroutines, or subs
For a sub, which takes no arguments, its definition and the call are very
straightforward and easy.

sub!call+me!{!
!!!!say!"I'm!called"!
}!

call+me;!
!

The syntax for declaring a sub’s parameters is similar to what other lan-
guages (including Perl 5.20 and higher) provide.

sub!cube($x)!{!
!!!!return!$x!**!3;!
}!

say!cube(3);!# 27!

The required parameters are a comma-separated list in the parentheses
immediately after the sub name. No other keywords, such as my, are
required to declare them.

sub!min($x,!$y)!{!

!!!!return!$x!<!$y!??!$x!!!!$y;!
}!
!

say!min(+2,!2);!!# -2
say!min(42,!24);!# 24

(??!...!!! is a ternary operator in Perl 6. Also, there’s a built-in opera-
tor min; see the details in the Chapter 2.)

The above-declared arguments are required; thus, if a sub is called with
a different number of actual arguments, an error will occur.

! 59

Non-value argument passing
By default, you pass the arguments by their values. Despite that, it is
not possible to modify them inside the sub. To pass a variable by refer-
ence, add the is!rw trait. (Note that formally this is not a reference
but a mutable argument.)

sub!inc($x!is!rw)!{!

!!!!$x++;!
}!
!

my!$value!=!42;!
inc($value);!

say!$value;!# 43!

Typed arguments
Similarly to the above-described typed variables, it is possible to indi-
cate that the sub’s parameters are typed. To do so, add a type name
before the name of the parameter.

sub!say+hi(Str!$name)!{!
!!!!say!"Hi,!$name!";!

}!

If the types of the expected and the actual parameters do not match, a
compile-time error will occur.

say+hi("Mr.!X");!# OK!

#!say+hi(123);!# Error: Calling say-hi(Int) will never work
!!!!!!!!!!!!!!!# with declared signature (Str $name)

Optional parameters
Optional parameters are marked with a question mark after their
names. The defined built-in function helps to tell if the parameter was
really passed:

!60

sub!send+mail(Str!$to,!Str!$bcc?)!{!

!!!!if!defined!$bcc!{!

!!!!!!!!# . . .
!!!!!!!!say!"Sent!to!$to!with!a!bcc!to!$bcc.";!
!!!!}!
!!!!else!{!

!!!!!!!!# . . .
!!!!!!!!say!"Sent!to!$to.";!
!!!!}!
}!

!
send+mail('mail@example.com');!
send+mail('mail@example.com',!'copy@example.com');!

Default values
Perl 6 also allows specifying the default values of the sub’s arguments.
Syntactically, this looks like an assignment.

sub!i+live+in(Str!$city!=!"Moscow")!{!!!!
!!!!say!"I!live!in!$city.";!!!!!!!!!!!!!!
}!

!
i+live+in('Saint!Petersburg');!

i+live+in();!# The default city!

It is also possible to pass values that are not known at the compile
phase. When the default value is not a constant, it will be calculated at
runtime.

sub!to+pay($salary,!$bonus!=!100.rand)!{!

!!!!return!($salary!+!$bonus).floor;!
}!
!

say!to+pay(500,!50);!# Always 550 net.!
say!to+pay(500);!!!!!# Any number between 500 and 600.!
say!to+pay(500);!!!!!# Same call but probably different output.

The “default” value will be calculated whenever it is required. Please
also note that both rand and floor are called as methods, not as func-
tions.

! 61

It is also possible to use previously passed parameters as default values:
!
sub!f($a,!$b!=!$a)!{!
!!!!say!$a!+!$b;!
}!

!

f(42);!!!!# 84
f(42,!+1)!# 41

Optional parameters or parameters with default values must be listed
after all the required ones because otherwise, the compiler will not be
able to understand which is which.

Named arguments
Apart from the positional parameters (those that have to go in the same
order both in the sub definition and in the sub call), Perl 6 allows
named variables, somewhat similar to how you pass a hash to a Perl 5
subroutine. To declare a named parameter, a semicolon is used:

sub!power(:$base,!:$exponent)!{!

!!!!return!$base!**!$exponent;!
}!

Now, the name of the variable is the name of the parameter, and the
order is not important anymore.

say!power(:base(2),!:exponent(3));!# 8!
say!power(:exponent(3),!:base(2));!# 8!

It is also possible to have different names for the named arguments and
those variables, which will be used inside the sub. To give a different
name, put it after a colon:

sub!power(:val($base),!:pow($exponent))!{!
!!!!return!$base!**!$exponent;!

}!

Now the sub expects new names of the arguments.

!62

say!power(:val(5),!:pow(2));!# 25!
say!power(:pow(2),!:val(5));!# 25

Alternatively, you can use the fatarrow syntax to pass named parame-
ters as it is done in the following example:
!

say!power(val!=>!5,!pow!=>!2);!# 25!

Slurpy parameters and flattening
Perl 6 allows passing scalars, arrays, hashes, or objects of any other type
as the arguments to a sub. There are no restrictions regarding the com-
bination and its order in a sub declaration. For example, the first argu-
ment may be an array, and the second one may be a scalar. Perl 6 will
pass the array as a whole. Thus the following scalar will not be eaten by
the array.

In the following example, the @text variable is used inside the sub, and
it contains only the values from the array passed in the sub call.

sub!cute+output(@text,!$before,!$after)!{!
!!!!say!$before!~!$_!~!$after!for!@text;!

}!
!
my!@text!=!<C!C++!Perl!Go>;!

cute+output(@text,!'{',!'}');!
!

The output looks quite predictable.

{C}&
{C++}&
{Perl}&
{Go}&

The language expects that the sub receives the arguments of the same
types that were listed in the sub declaration.

That also means, for example, that if the sub is declared with only one
list argument, then it cannot accept a few scalars.

! 63

sub!get+array(@a)!{!

!!!!say!@a;!
}!
!

get+array(1,!2,!3);!# Error: Calling get-array(Int, Int, Int)
!!!!!!!!!!!!!!!!!!!!# will never work with declared signature (@a)
!

To let an array accept a list of separate scalar values, you need to say
that explicitly by placing an asterisk before the argument name. Such
an argument is called slurpy.

sub!get+array(*@a)!{!
!!!!say!@a;!

}!
!

get+array(1,!2,!3);!# Good: [1 2 3]

Similarly, it will work in the opposite direction, that is to say, when the
sub expects to get a few scalars but receives an array when called.

sub!get+scalars($a,!$b,!$c)!{!

!!!!say!"$a!and!$b!and!$c";!
}!
!

my!@a!=!<3!4!5>;!

get+scalars(@a);!# Error: Calling get-scalars(Positional)
!!!!!!!!!!!!!!!!!# will never work with declared
!!!!!!!!!!!!!!!!!# signature ($a, $b, $c)

A vertical bar is used to unpack an array to a list of scalars.

get+scalars(|@a);!# 3 and 4 and 5

!64

Nested subs
Nested subs are allowed in Perl 6.

sub!cube($x)!{!
!!!!sub!square($x)!{!

!!!!!!!!return!$x!*!$x;!
!!!!}!
!

!!!!return!$x!*!square($x);!
}!
!

say!cube(3);!# 27

The name of the inner sub square is only visible within the body of the
outer sub cube.

Anonymous subs
Let’s look at the creation of anonymous subs. One of the options (there
are more than one) is to use syntax similar to what you often see in
JavaScript.

say!sub!($x,!$y)!{$x!~!'!'!~!$y}("Perl",!6);!

The first pair of parentheses contains the list of formal arguments of
the anonymous sub; the second, the list of the arguments passed. The
body of the sub is located between the braces. (The tilde denotes a
string concatenation operator in Perl 6.)

By the way, it is important that there be no spaces before parentheses
with the actual values of the sub parameters.

Another way of creating an anonymous sub is to use the arrow operator
(+>). We will discuss it later in the section dedicated to anonymous
blocks.

! 65

Variables and signatures

Lexical variables
Lexical variables in Perl 6 are those declared with the my keyword. The-
se variables are only visible within the block where they were declared.
If you tried accessing them outside the scope, you’d get the error: Var+
iable!'$x'!is!not!declared.

{!
!!!!!my!$x!=!42;!

!!!!!say!$x;!# This is fine!
}!

#!say!$x;!!!!# This is not!!
!

To “extend” the scope, lexical variables can be used in closures. In the
following example, the!seq! sub returns a block, which uses a variable
defined inside the sub.

sub!seq($init)!{!

!!!!!my!$c!=!$init;!
!!!!!return!{$c++};!
}!!

The sub returns a code block containing the variable $c. After the sub’s
execution, the variable will not only still exist but also will keep its val-
ue, which you can easily see by calling a function by its reference a few
times more.

my!$a!=!seq(1);!!

!

say!$a();!# 1!!
say!$a();!# 2!!
say!$a();!# 3!!

It is possible to create two independent copies of the local variable.

my!$a!=!seq(1);!!
my!$b!=!seq(42);!!
!!

!66

To see how it works, call the subs a few times:
!

say!$a();!# 1!!
say!$a();!# 2!!
say!$b();!# 42!!
say!$a();!# 3!!
say!$b();!# 43!!
!

state variables
State variables (declared with the keyword! state) appeared in Perl
5.10 and work in Perl 6. Such variables are initialized during the first
call and keep their values in subsequent sub calls.

It is important to keep in mind that a single instance of the variable is
created. Let us return to the example with a counter and replace the!my
declaration with the!state!one. The closure will now contain a refer-
ence to the same variable.

sub!seq($init)!{!
!!!!!state!$c!=!$init;!
!!!!!return!{$c++};!

}!!

What happens when you create more than one closure?

my!$a!=!seq(1);!

my!$b!=!seq(42);!!
!

All of them will reference the same variable, which will increase after
calling either!$a()!or!$b().

say!$a();!# 1!
say!$a();!# 2!
say!$b();!# 3!
say!$a();!# 4!
say!$b();!# 5!!

! 67

Dynamic variables
The scope of dynamic variables is calculated at the moment when a
variable is accessed. Thus, two or more calls of the same code may pro-
duce different results.

Dynamic variables are marked with the!*!twigil (a character clearly ref-
erencing a wildcard).

In the following example, the!echo()!function prints a dynamic variable!
$*var, which is not declared in the function, nor is it a global variable.
It, nevertheless, can be resolved when used in other functions, even if
they have their own instances of the variable with the same name.
!
sub!alpha!{!

!!!!my!$*var!=!'Alpha';!
!!!!echo();!

}!
!
sub!beta!{!

!!!!my!$*var!=!'Beta';!
!!!!echo();!
}!

!
sub!echo()!{!
!!!!say!$*var;!

}!
!

alpha();!# Alpha!
beta();!!# Beta!!
!

Anonymous code blocks
Perl 6 introduces the concept of so-called pointy blocks (or pointy ar-
row blocks). These are anonymous closure blocks, which return a refer-
ence to the function and can take arguments.

The syntax of defining pointy blocks is an arrow!+>!followed by the ar-
gument list and a block of code.

!68

my!$cube!=!+>!$x!{$x!**!3};!

say!$cube(3);!# 27!!
!

Here, the block!{$x!**!3}, which takes one argument!$x, is created
first. Then, it is called using a variable!$cube!as a reference to the func-
tion:!$cube(3).

Pointy blocks are quite handy in loops.

for!1..10!+>!$c!{!
!!!!say!$c;!
}!!

The for loop takes two arguments: the range!1..10!and the block of
code with the argument!$c. The whole construction looks like syntactic
sugar for loops.

There can be more than one argument. In that case, list them all after
an arrow.

my!$pow!=!+>!$x,!$p!{$x!**!$p};!

say!$pow(2,!15);!# 32768!!
!

The same works with loops and with other Perl elements where you
need passing anonymous code blocks.

for!0..9!+>!$i,!$j!{!
!!!!say!$i!+!$j;!
}!!

!

In a loop iteration, two values from the list are consumed each time.
So, the loop iterates five times and prints the sum of the pairs of num-
bers: 1,!5,!9, 13 and 17.

! 69

Placeholders
When an anonymous code block is created, declaring a list of arguments
is not mandatory even when a block takes an argument. To let this hap-
pen, Perl 6 uses special variable containers, which come with the! ^!
twigil. This is similar to the predefined variables!$a!and!$b in Perl 5.

In the case of more than one argument, their actual order corresponds
to the alphabetical order of the names of the!^-ed variables.

my!$pow!=!{$^x!**!$^y};!!

say!$pow(3,!4);!# 81!!

The values 3 and 4, which were passed in the function call, will land in
its variables!$^x!and!$^y, respectively.

Now, let us go back to the loop example from the previous section and
rewrite it in the form with no arguments (and thus, no arrow).

for!0..9!{!
!!!!say!"$^n2,!$^n1";!

}!!
!

Note that the code block starts immediately after the list, and there is
no arrow. There are two loop variables,!$^n1!and!$^n2, and they are not
in alphabetical order in the code. Still, they get the values as though
they were mentioned in the function signature as!($n1,!$n2).

Finally, the placeholders may be named parameters. The difference is
in the twigil. To make the placeholder named, use the colon!:.

my!$pow!=!{$:base!**!$:exp};!

say!$pow(:base(25),!:exp(2));!# 625!!
!

With the named placeholders, the alphabetical order is of no im-
portance anymore. The following call gives us the same result.

!70

say!$pow(:exp(2),!:base(25));!# 625!!
!

Keep in mind that using named placeholders is just a different way of
specifying a signature to the block, and you cannot have both.

The following example demonstrates that you cannot use a placeholder
with the name of the already existing parameter:

sub!f($a)!{!

!!!!#!say!$^a;!# Error: Redeclaration of symbol '$^a'
!!!!!!!!!!!!!!!# as a placeholder parameter!
}!

Neither you can use any other placeholder names if the signature of the
sub is already defined:

sub!f($a)!{!

!!!!say!$^b;!# Placeholder variable '$^b' cannot
!!!!!!!!!!!!!# override existing signature
}!
!

Function overloading
The!multi!keyword allows defining more than one function (or sub-
routine, or simply sub) with the same name. The only restriction is that
those functions should have different signatures. In Perl 6, the signature
of the sub is defined together with its name, and the arguments may be
typed. In the case of multi subs, typed arguments make even more
sense because they help to distinguish between different versions of the
function with a single name and make a correct choice when the com-
piler needs to call one of them.

multi!sub!twice(Int!$x)!{!!
!!!!return!$x!*!2;!!
}!!!

multi!sub!twice(Str!$s)!{!!
!!!!return!"$s,!$s";!!
}!!!

! 71

!

say!twice(42);!!!# 84!!
say!twice("hi");!# hi, hi!!

As we have two functions here, one taking an integer argument and
another expecting a string, the compiler can easily decide which one it
should use.

Sub overloading with subtypes
Multi subs can be made even more specific by using subtypes. In Perl 6,
subtypes are created with the subset keyword. A subtype definition
takes one of the existing types and adds a restriction to select the val-
ues to be included in the subtype range.

The following lines give a clear view of how subtypes are defined. From
the same integer type,!Int, the!Odd!subtype selects only the odd num-
bers, while the!Even subtype picks only the even numbers.

subset!Odd!of!Int!where!{$^n!%!2!==!1};!!
subset!Even!of!Int!where!{$^n!%!2!==!0};!!

Now, the subtypes can be used in the signatures of the multi subs. The!
testnum!function has two versions, one for odd and one for even num-
bers.

multi!sub!testnum(Odd!$x)!{!!
!!!!say!"$x!is!odd";!!
}!!!

!
multi!sub!testnum(Even!$x)!{!!
!!!!say!"$x!is!even";!!

}!!
!

Which function will be used in a call,!testnum($x), depends on the
actual value of the variable!$x. Here is an example with the loop, calling
either testnum(Even)! for even numbers or! testnum(Odd)! for odd
numbers.

!72

for!1..4!+>!$x!{!!

!!!!testnum($x);!!
}!!
!

The loop prints a sequence of alternating function call results, which
tells us that Perl 6 made a correct choice by using the rules provided in
the subtype definitions.

1&is&odd&&
2&is&even&&
3&is&odd&&
4&is&even&

Modules
Basically, the Perl 6 modules are the files on disk containing the Perl 6
code. Modules are kept in files with the!.pm!extension. The disk hierar-
chy reflects the namespace enclosure, which means that a module
named!X::Y!corresponds to the file!X/Y.pm, which will be searched for
in one of the predefined catalogues or in the location specified by the!+
I!command line option. Perl 6 has more sophisticated rules for where
and how to search for the real files (e. g., it can distinguish between
different versions of the same module), but let us skip that for now.

module!
The keyword!module!declares a module. The name of the module is
given after the keyword. There are two methods of scoping the module.
Either it can be a bare directive in the beginning of a file, or the whole
module can be scoped in the code block within the pair of braces.

In the first option, the rest of the file is the module definition (note the
presence of the unit keyword).

! !

! 73

unit!module!X;!!!

!
sub!x()!{!
!!!!say!"X::x()";!

}!
!

In the second option, the code looks similar to the way you declare
classes (more on classes in Chapter 4).

module!X!{!!
!!!!sub!x()!{!!
!!!!!!!!say!"X::x()";!!

!!!!}!!
}!!

export!
The! my! and! our! variables, as well as! subs, which are defined in the
module, are not visible outside of its scope by default. To export a
name, the!is!export!trait is required.

unit!module!X;!!!
!
sub!x()!is!export!{!!

!!!!say!"X::x()";!!
}!!
!

This is all you need to do to be able to call the!x()! sub in the pro-
gramme using your module.

use!
To use a module in your code, use the keyword!use.

An example. Let us first create the module!Greet!and save it in the file
named!Greet.pm.

! !

!74

unit!module!Greet;!!!

!
sub!hey($name)!is!export!{!!
!!!!say!"Hey,!$name!";!!

}!!

Then, let us use this module in our programme by saying!use!Greet.

use!Greet;!!!

!

hey("you");!# Hey, you!!!
!
Module names can be more complicated. With!is!export, all the ex-
ported names will be available in the current scope after the module is!
used.

In the following example, the module! Greet::Polite! sits in the!
Greet/Polite.pm!file.

module!Greet::Polite!{!!
!!!!sub!hello($name)!is!export!{!!

!!!!!!!!say!"Hello,!$name!";!!
!!!!}!!
}!!

The programme uses both of these modules and can access all the ex-
ported subs.

use!Greet;!!
use!Greet::Polite;!!!
!

hey("you");!!!!!# a sub from Greet!!
hello("Mr.!X");!# from Greet::Polite!!

import!
The! use! keyword automatically imports the names from modules.
When a module is defined in the current file in the lexical scope (please
note that the module can be declared as local with!my!module), no im-

! 75

port will be done by default. In this case, importing the names should
be done explicitly with the!import!keyword.

my!module!M!{!!
!!!!sub!f($x)!is!export!{!!
!!!!!!!!return!$x;!!

!!!!}!!
}!!!
!

import!M;!!!
!
say!f(42);!!

!

The!f!name will only be available for use after it is imported. Again,
only the names marked as!is!export!are exported.

As import happens in the compile-time, the!import! instruction itself
can be located even after some names from the module are used.

my!module!M!{!!
!!!!sub!f($x)!is!export!{!!

!!!!!!!!return!$x;!!
!!!!}!!
}!!!

!

say!f(1);!# 1!
import!M;!!

say!f(2);!# 2!

need!
To just load a module and do no exports, use the!need!keyword.

Let us create a module named!N, which contains the sub!n(). This time,
the sub is declared as!our!but with no!is!export.

unit!module!N;!!!
!
our!sub!n()!{!!

!!!!say!"N::n()";!!
}!!

!76

Then you!need!a module and may use its methods using the fully quali-
fied names.

need!N;!!
!
N::n();!!

!

The sequence of the two instructions:!need!M;!import!M;! (now!im+
port!should always come after the!need) is equivalent to a single!use!
M; statement.

require!
The! require! keyword loads a module at a runtime unlike the! use,
which loads it at the compile-time.

For example, here is a module with a single sub, which returns the sum
of its arguments.

unit!module!Math;!!!
!

our!sub!sum(*@a)!{!!
!!!!return![+]!@a;!!
}!!

!

(The star in!*@a!is required to tell Perl to pack all the arguments into a
single array so that we can call the sub as!sum(1,!2,!3). With no!*, a
syntax error will occur, as the sub expects an array but not three sca-
lars.)

Now,!require!the module and use its sub.

require!Math;!!!
!

say!Math::sum(24..42);!# 627!!

Before the!import!Math!instruction, the programme will not be able to
call!Math::sum()!because the name is not yet known. A single import!

! 77

Math;!will not help as the import happens at compile-time when the
module is not loaded yet.

Import summary
Here is a concise list of the keywords for working with modules.

use!loads and imports a module at compile time

need! loads a module at compile time but does not import anything
from it

import!imports the names from the loaded module at compile time

require!loads a module at runtime without importing the names

!

Chapter 4
Classes

!80

We have already seen elements of the object-oriented programming in
Perl 6. Methods may be called on those variables, which do not look
like real objects from the first view. Even more, methods may be called
on constants.

The types that were used earlier (like Int or Str) are container types.
Variables of a container type can contain values corresponding to some
native representation. The compiler does all the conversion it needs for
executing a programme. For example, when it sees 42.say, it calls the
say method, which the Int object inherits from the top of the type
hierarchy in Perl 6.

Perl 6 also supports object-oriented programming in its general under-
standing. If you are familiar with how to use classes in other modern
programming languages, it will be easy for you to work with classes in
Perl 6.

This is how the class is declared:

class!Cafe!{!

}!

Class attributes
Class data variables are called attributes. They are declared with the
has keyword. An attribute’s scope is defined via its twigil. As usual, the
first character of the twigil indicates the type of the container (thus, a
scalar, an array, or a hash). The second character is either . if a variable
is public or ! for the private ones. An accessor will be generated by a
compiler for the public attributes.

class!Cafe!{!

!!!!has!$.name;!
!!!!has!@!orders;!

}!

! 81

To create or instantiate an object of the class X, the constructor is
called: X.new(). This is basically a method derived from the Any class
(this is one of the classes on the top of the object system in Perl 6).

my!$cafe!=!Cafe.new(!

!!!!name!=>!"Paris"!
);!

At this point, you can read public attributes.

say!$cafe.name;!

Reading from $.name is possible because, by default, all public fields
are readable and a corresponding access method for them is created.
However, that does not allow changing the attribute. To make a field
writable, indicate it explicitly by adding the is!rw trait.

class!Cafe!{!
!!!!has!$.name!is!rw;!

!!!!has!@!orders;!
}!
!

my!$cafe!=!Cafe.new(!
!!!!name!=>!"Paris"!
);!

Now, read and write actions are available.

$cafe.name!=!"Berlin";!
say!$cafe.name;!

Class methods
The method keyword defines a method, similarly to how we define sub-
routines with sub. A method has access to all attributes of the class,
both public and private.

!82

The method itself can be private. We will return to this later after talk-
ing about inheritance.

In the following short example, two methods are created, and each of
them manipulates the private @!orders array.

class!Cafe!{!
!!!!has!$.name;!

!!!!has!@!orders;!
!
!!!!method!order($what)!{!

!!!!!!!!@!orders.push($what);!
!!!!}!
!

!!!!method!list+orders!{!
!!!!!!!!@!orders.sort.join(',!').say;!

!!!!}!
}!
!

my!$cafe!=!Cafe.new(!
!!!!name!=>!"Paris"!
);!

!
$cafe.order('meet');!
$cafe.order('fish');!

$cafe.list+orders;!# fish, meet!

The code should be quite readable for people familiar with OOP. Just
keep in mind that “everything is an object” and you may chain method
calls.

@!orders.sort.join(',!').say;!

Instance methods receive a special variable, self (having no sigil),
which points to the current object. It can be used to access instance
data or the class methods.

 !

! 83

method!order($what)!{!

!!!!@!orders.push($what);!
!!!!self.list+orders;!
}!

!
method!list+orders!{!
!!!!say!self.name;!

!!!!@!orders.sort.join(',!').say;!
}!

Inheritance
Inheritance is easy. Just say is!Baseclass when declaring a class. Hav-
ing said that, your class will be derived from the base class.

class!A!{!
!!!!method!x!{!
!!!!!!!!say!"A.x"!

!!!!}!
!!!!method!y!{!
!!!!!!!!say!"A.y"!

!!!!}!
}!
!

class!B!is!A!{!
!!!!method!x!{!

!!!!!!!!say!"B.x"!
!!!!}!
}!

The further usage of the inherited classes is straightforward.

my!$a!=!A.new;!

$a.x;!# A.x
$a.y;!# A.y!
!
my!$b!=!B.new;!

$b.x;!# B.x!
$b.y;!# A.y!
!

!84

It is important that the result of the method search does not depend on
which type was used to declare a variable. Perl 6 always will first use
the methods belonging to the class of the variable, which is currently
stored in the variable container. For example, return to the previous
example and declare the variable $b to be one of type A, but still create
an instance of B with B.new. Even in that case, calling $b.x will still
lead to the method defined in the derived class.

my!A!$b!=!B.new;!

$b.x;!# B.x!
$b.y;!# A.y!

Meta-methods (which also are available for every object without writ-
ing any code) provide information about the class details. In particular,
to see the exact order in which method resolution will be executed, call
the .^mro metamethod.

say!$b.^mro;!!

In our example, the following order will be printed.

((B)&(A)&(Any)&(Mu))&

Of course, you may call the .^mro method on any other variable or ob-
ject in a programme, regardless of whether it is an instance of the user-
defined class, a simple variable, or a constant. Just get an idea of how
this is implemented internally.

$!perl6!+e'42.^mro.say'!

((Int)&(Cool)&(Any)&(Mu))&

! 85

Multiple inheritance
When more than one class is mentioned in the list of base classes, we
have multiple inheritance.

class!A!{!

!!!!method!a!{!
!!!!!!!!say!"A.a"!
!!!!}!

}!
!

class!B!{!
!!!!method!b!{!
!!!!!!!!say!"B.b";!

!!!!}!
}!
!

class!C!is!A!is!B!{!
}!
!

my!$c!=!C.new;!
$c.a;!
$c.b;!

With multiple inheritance, method resolution order is more important,
as different base classes may have methods with the same name, or, for
example, the two base classes have another common parent. This is
why you should know the order of the base class now.

class!A!{!

!!!!method!meth!{!
!!!!!!!!say!"A.meth"!
!!!!}!

}!
!

class!B!{!
!!!!method!meth!{!
!!!!!!!!say!"B.meth";!

!!!!}!
}!
!

 !

!86

class!C!is!A!is!B!{!

}!
!
class!D!is!B!is!A!{!

}!

Here, the method named meth exists in both parent classes A and B,
thus calling it on variables of the types C and D will be resolved differ-
ently.

my!$c!=!C.new;!

$c.meth;!# A.meth!
!
my!$d!=!D.new;!

$d.meth;!# B.meth!

This behaviour is confirmed by the method resolution order list, which
is actually used by the compiler.

$c.^mro.say;!# ((C) (A) (B) (Any) (Mu))!
$d.^mro.say;!# ((D) (B) (A) (Any) (Mu))!

Private (closed) methods
Now, after we have discussed inheritance, let us return to the private
(or closed) methods. These methods may only be used within the class
itself. Thus, you cannot call them from the programme that uses an
instance of the class. Nor are they accessible in the derived classes. An
exclamation mark is used to denote a private method.

The following example demonstrates the usage of a private method of a
class. The comments in the code will help you to understand how it
works.

 !

! 87

class!A!{!

!!!!# Method is only available within A
!!!!method!!private!{!

!!!!!!!!say!"A.private";!
!!!!}!
!

!!!!# Public method calling a private method
!!!!method!public!{!

!!!!!!!!# You cannot avoid self here.
!!!!!!!!# Consider the '!' as a separator like '.'
!!!!!!!!self!private;!
!!!!}!
}!

!
class!B!is!A!{!
!!!!method!method!{!

!!!!!!!!# Again self, but this the '.' this time.
!!!!!!!!# This is a public method.
!!!!!!!!self.public;!

!

!!!!!!!!# This will be a compile-time error.
!!!!!!!!#!self!private;!
!!!!}!
}!

!
my!$b!=!B.new;!

$b.method;!# A.private

The exclamation mark is actually part of the method name. So you can
have both method!meth and method!!meth in the same class. To access
them, use self.meth and self!meth, respectively:

class!C!{!

!!!!method!meth!!{say!'meth'!}!
!!!!method!!meth!{say!'!meth'}!
!!!!method!demo!{!

!!!!!!!!self.meth;!
!!!!!!!!self!meth;!
!!!!}!

}!
!
my!$c!=!C.new;!

$c.demo;!# Prints both meth and !meth

!88

Submethods
Perl 6 defines the so-called submethods for classes. These are the
methods which are not propagating to the subclass’s definition. The
submethods may be either private or public, but they will not be inher-
ited by the children.

class!A!{!
!!!!submethod!submeth!{!

!!!!!!!!say!"A.submeth"!
!!!!}!
}!

!
class!B!is!A!{!
}!

!
my!A!$a;!
my!B!$b;!

!

$a.submeth;!!!# OK!
#!$b.submeth;!# Error: No such method 'submeth' for invocant of type 'B'!

Constructors
You may have noticed in the previous examples that two different ap-
proaches to creating a typed variable were used.

The first was via an explicit call of the new constructor. In this case, a
new instance was created.

my!$a!=!A.new;!

In the second, a variable was declared as a typed variable. Here, a con-
tainer was created.

my!A!$a;!

! 89

Creating a container means not only that the variable will be allowed to
host an object of that class but also that you will still need to create
that object itself.

my!A!$a!=!A.new;!

Let us consider an example of a class which involves one public method
and one public data field.
!

class!A!{!
!!!!has!$.x!=!42;!
!!!!method!m!{!

!!!!!!!!say!"A.m";!
!!!!}!
}!

The internal public variable $.x is initialized with the constant value.

Now, let us create a scalar container for the variable of the A class.

my!A!$a;!

The container is here, and we know its type, but there are no data yet.
At this moment, the class method may be called. It will work, as it is a
class method and does not require any instance with real data.

$a.m;!# Prints “A.m”

Meanwhile, the $.x field is not available yet.

say!$a.x;!# Error: Cannot look up attributes in a A type object

We need to create an instance object by calling a constructor first.

my!A!$b!=!A.new;!

say!$b.x;!# Prints 42

!90

Please note that the initialization (=!42) only happens when a construc-
tor is called. Prior to this, there is no object, and thus no value can be
assigned to an attribute.

The new method is inherited from the Mu class. It accepts a list of the
named arguments. So, this method can be used on any object with any
reasonable arguments. For instance:

my!A!$c!=!A.new(x!=>!14);!

say!$c.x;!# 14, not 42

Note that the name of the field (x) may not be quoted. An attempt of
A.new('x'!=>!14) will fail because it will be interpreted as a Pair
being passed as a positional parameter.

Alternatively, you can use the :named(value) format for specifying
named parameters:

my!A!$c!=!A.new!:x(14);!# Or A.new(:x(14)) if you wish!
say!$c.x;!# 14!

For the more sophisticated constructors, the class’s own BUILD sub-
method may be defined. This method expects to get a list of the named
arguments.

class!A!{!

!!!!# Two fields in an object.
!!!!# One of them will be calculated in the constructor.
!!!!has!$.str;!
!!!!has!$!len;!
!!!!!

!!!!# The constructor expects its argument named ‘str’.
!!!!submethod!BUILD(:$str)!{!

!!!!!!!!# This field is being copied as is:
!!!!!!!!$!str!=!$str;!
!

!!!!!!!!# And this field is calculated:
!!!!!!!!$!len!=!$str.chars;!
!!!!}!

! 91

!!!!method!dump!{!

!!!!!!!!# Here, we print the current values.
!!!!!!!!# The variables are interpolated as usual
!!!!!!!!# but to escape an apostrophe character from
!!!!!!!!# the variable name, a pair of braces is added.
!!!!!!!!"{$.str}'s!length!is!$!len.".say;!
!!!!}!

}!
!
my!$a!=!A.new(str!=>!"Perl");!

$a.dump;!

This programme prints the following output:

Perl’s&length&is&4.&
&

Roles
Apart from the bare classes, the Perl 6 language allows roles. These are
what are sometimes called interfaces in other object-oriented languages.
Both the methods and the data, which are defined in a role, are availa-
ble for “addition” (or mixing-in) to a new class with the help of the
does keyword.

A role looks like a base class that appends its methods and data to gen-
erate a new type. The difference between prepending a role and deriv-
ing a class from a base class is that with a role, you do not create any
inheritance. Instead, all the fields from the role become the fields of an
existing class. In other words, classes are the is a characteristic of an
object, while roles are the does traits. With roles, name conflicts will be
found at compile time; there is no need to traverse the method resolu-
tion order paths.
The following example defines a role, which is later used to create two
classes; we could achieve the same with bare inheritance, though:

!92

The role of the catering place is to take orders
(via the order method), to count the total amount
of the order (method calc) and issuing a bill (method bill).
role!FoodService!{!
!!!!has!@!orders;!
!

!!!!method!order($price)!{!
!!!!!!!!@!orders.push($price);!
!!!!}!

!
!!!!method!calc!{!

!!!!!!!!# [+] is a hyperoperator (hyperop) connecting all the
!!!!!!!!# elements of an array.
!!!!!!!!# It means that [+] @a is equivalent to
!!!!!!!!# @a[0] + @a[1] + ... + @a[N].
!!!!!!!!return![+]!@!orders;!
!!!!}!
!

!!!!method!bill!{!

!!!!!!!!# Order's total is still a sum of the orders.
!!!!!!!!return!self.calc;!
!!!!}!

}!
!

Launching a cafe. A cafe is a catering place.
class!Cafe!does!FoodService!{!
!!!!method!bill!{!

!!!!!!!!# But with a small surcharge.
!!!!!!!!return!self.calc!*!1.1;!
!!!!}!
}!

!

And now a restaurant.
class!Restaurant!does!FoodService!{!
!!!!method!bill!{!

!!!!!!!!# First, let the customer wait some time.
!!!!!!!!sleep!10.rand;!

!

!!!!!!!!# Second, increase the prices even more.
!!!!!!!!return!self.calc!*!1.3;!
!!!!}!
}!

!

! 93

Let us try that in action. First, the cafe.
!
my!$cafe!=!Cafe.new;!

$cafe.order(10);!
$cafe.order(20);!

say!$cafe.bill;!# Immediate 33!

Then, the restaurant. (Note that this code will have a delay because of
the class definition).

my!$restaurant!=!Restaurant.new;!

$restaurant.order(100);!
$restaurant.order(200);!

say!$restaurant.bill;!# 390 after some unpredictable delay

Roles can be used for defining and API and forcing the presence of a meth-
od in a class that uses a role. For example, let’s create a role named Liq+
uid, which requires that the flows method must be implemented.

role!Liquid!{!
!!!!method!flows!{...}!
}!

!
class!Water!does!Liquid!{!
}!

It is not possible to run this programme as it generates a compile-time
error:

Method&'flows'&must&be&implemented&by&Water&because&it&is&
required&by&a&role&
&
Note that the ellipsis ... is a valid Perl 6 construction that is used to
create forward declarations.

!

Chapter 5
New Concepts

!96

Channels
Perl 6 includes a number of solutions for parallel and concurrent calcu-
lations. The great thing is that this is already built-in into the language
and no external libraries are required.

The idea of the channels is simple. You create a channel through which
you can read and write. It is a kind of a pipe that can also easily transfer
Perl 6 objects. If you are familiar with channels in, for example, Go,
you would find Perl 6’s channels easily to understand.

Read and write
In Perl 6, there is a predefined class!Channel, which includes, among
the others, the!send! and the!receive!methods. Here is the simplest
example, where an integer number first is being sent to the channel!$c!
and is then immediately read from it.

my!$c!=!Channel.new;!!
$c.send(42);!!

say!$c.receive;!# 42!!

A channel can be passed to a sub as any other variable. Should you do
that, you will be able to read from that channel in the sub.

my!$ch!=!Channel.new;!!
$ch.send(2017);!!
func($ch);!!!

!
sub!func($ch)!{!!

!!!!say!$ch.receive;!# 2017!!
}!!

It is possible to send more than one value to a channel. Of course, you
can later read them all one by one in the same order as they were sent.

! !

! 97

my!$channel!=!Channel.new;!!!

!

A few even numbers are sent to the channel.
for!<1!3!5!7!9>!{!!
!!!!$channel.send($_);!!
}!!!

!

Now, we read the numbers until the channel has them.
"while @a -> $x" creates a loop with the $x as a loop variable.
while!$channel.poll!+>!$x!{!!
!!!!say!$x;!!
}!!!

!

After the last available number, Nil is returned.
$channel.poll.say;!# Nil!!
!

In the last example, instead of the previously used!receive!method,
another one is used:!$channel.poll. The difference lies in how they
handle the end of the queue. When there are no more data in the chan-
nel, the!receive!will block the execution of the programme until new
data arrive. Instead, the!poll!method returns!Nil!when no data are left.

To prevent the programme from hanging after the channel data is con-
sumed, close the channel by calling the!close!method.

$channel.close;!!

while!$channel.receive!+>!$x!{!!
!!!!say!$x;!!
}!

!!

Now, you only read data, which are already in the channel, but after
the queue is over, an exception will occur:! Cannot!receive!a!mes+
sage!on!a!closed!channel. Thus either put a!try!block around it or
use!poll.

$channel.close;!!
try!{!!

!!!!while!$channel.receive!+>!$x!{!!
!!!!!!!!say!$x;!!
!!!!}!!

}!!

!98

Here, closing a channel is a required to quit after the last data piece
from the channel arrives.

The list method
The! list!method accompanies the previously seen methods and re-
turns everything that is left unread in the channel.

my!$c!=!Channel.new;!!!
!

$c.send(5);!!
$c.send(6);!!!
!

$c.close;!!

say!$c.list;!# (5 6)!!
!

The method blocks the programme until the channel is open, thus it is
wise to close it before calling the!list method.

Beyond scalars
Channels may also transfer both arrays and hashes and do it as easily as
they work with scalars. Unlike Perl 5, an array will not be unfolded to a
list of scalars but will be passed as a single unit. Thus, you may write
the following code.

my!$c!=!Channel.new;!!

my!@a!=!(2,!4,!6,!8);!!
$c.send(@a);!!!
!

say!$c.receive;!# [2 4 6 8]
!

The!@a!array is sent to the channel as a whole and later is consumed as a
whole with a single!receive call.

What’s more, if you save the received value into a scalar variable, that
variable will contain an array.

! !

! 99

my!$x!=!$c.receive;!!

say!$x.WHAT;!# (Array)!!
!

The same discussions apply to hashes.

my!$c!=!Channel.new;!

my!%h!=!(alpha!=>!1,!beta!=>!2);!!
$c.send(%h);!!!
!

say!$c.receive;!# {alpha => 1, beta => 2}!!
!

Instead of calling the!list!method, you can use the channel in the list
context (but do not forget to close it first).

$c.close;!!

my!@v!=!@$c;!!

say!@v;!# [{alpha => 1, beta => 2}]!
!

Note that if you send a list, you will receive it as a list element of the!
@v!array.

Here is another example of “dereferencing” a channel:

$c.close;!!
for!@$c!+>!$x!{!!

!!!!say!$x;!!

}!# {alpha => 1, beta => 2}!
!!

The closed method
The!Channel!class also defines a method that checks on whether the
channel is closed. This method is called!closed.

my!$c!=!Channel.new;!!

say!"open"!if!!$c.closed;!# is open!!!
!
$c.close;!!

say!"closed"!if!$c.closed;!# closed!!
!

!100

Despite the simplicity of using the method, it in fact returns not a sim-
ple Boolean value but a promise object (a variable of the!Promise!class).
A promise (we will talk about this later) can be either kept or broken.
Thus, if the channel is open, the!closed!promise is not yet kept; it is
only given (or planned).

Promise.new(status&=>&PromiseStatus::Planned,&…)&&
!

After the channel is closed, the promise is kept.

Promise.new(status&=>&PromiseStatus::Kept,&…)&&
!

You can see the state of the promise above in its status field.

* * *

In this section, we discussed the simplest applications of channels,
where things happen in the same thread. The big thing about channels
is that they transparently do the right thing if you’re sending in one or
more threads, and receiving in another one or more threads. No value
will be received by more than one thread, and no value shall be lost
because of race conditions when sending them from more than one
thread.

! 101

Promises
Promises are objects aimed to help synchronize parallel processes. The
simplest use case involving them is to notify if the earlier given promise
is kept or broken or if its status is not yet known.

Basics
The!Promise.new! constructor builds a new promise. The status of it
can be read using the! status! method. Before any other actions are
done with the promise, its status remains to be!Planned.

my!$p!=!Promise.new;!!

say!$p.status;!# Planned!!

When the promise is kept, call the!keep!method to update the status to
the value of Kept.

my!$p!=!Promise.new;!!

$p.keep;!!

say!$p.status;!# Kept!!
!

Alternatively, to break the promise, call the!break!method and set the
status of the promise to!Broken.

my!$p!=!Promise.new;!!

say!$p.status;!# Planned!!!
!
$p.break;!!

say!$p.status;!# Broken!!

Instead of asking for a status, the whole promise object can be convert-
ed to a Boolean value. There is the!Bool!method for that; alternatively,
the unary operator!? can be used instead.

say!$p.Bool;!!

say!?$p;!!

!102

Keep in mind that as a Boolean value can only take one of the two pos-
sible states, the result of the Boolean typecast is not a full replacement
for the!status!method.

There is another method for getting a result called!result. It returns
truth if the promise has been kept.

my!$p!=!Promise.new;!!
$p.keep;!!

say!$p.result;!# True!!

Be careful. If the promise is not kept at the moment the! result! is
called, the programme will be blocked until the promise is not in the!
Planned status anymore.

In the case of the broken promise, the call of!result!throws an excep-
tion.

my!$p!=!Promise.new;!!
$p.break;!!
say!$p.result;!!

Run this programme and get the exception details in the console.

Tried&to&get&the&result&of&a&broken&Promise&

To avoid quitting the programme under an exception, surround the
code with the!try!block (but be ready to lose the result of!say—it will
not appear on the screen).

my!$p!=!Promise.new;!!

$p.break;!!
try!{!!
!!!!say!$p.result;!!

}!!

! 103

The!cause!method, when called instead of the!result, will explain the
details for the broken promise. The method cannot be called on the
kept promise:

Can&only&call&cause&on&a&broken&promise&(status:&Kept)&

Like with exceptions, both kept and broken promises can be attributed
to a message or an object. In this case, the!result!will return that mes-
sage instead of a bare!True!or!False.

This is how a message is passed for the kept promise:

my!$p!=!Promise.new;!

$p.keep('All!done');!

say!$p.status;!# Kept!
say!$p.result;!# All done

This is how it works with the broken promise:

my!$p!=!Promise.new;!
$p.break('Timeout');!

say!$p.status;!# Broken!
say!$p.cause;!!# Timeout!

Factory methods
There are a few factory methods defined in the!Promise!class.

start!
The!start!method creates a promise containing a block of code. There
is an alternative way to create a promise by calling!Promise.start!via
the start!keyword.

my!$p!=!start!{!!
!!!!42!!

}!!
!

(Note that in Perl 6, a semicolon is assumed after a closing brace at the
end of a line.)

!104

The! start!method returns a promise. It will be broken if the code
block throws an exception. If there are no exceptions, the promise will
be kept.

my!$p!=!start!{!!

!!!!42!!
}!!

say!$p.result;!# 42!!
say!$p.status;!# Kept!!

Please note that the!start!instruction itself just creates a promise and
the code from the code block will be executed on its own. The!start
method immediately returns, and the code block runs in parallel. A test
of the promise status will depend on whether the code has been exe-
cuted or not. Again, remember that! result!will block the execution
until the promise is not in the!Planned!status anymore.

In the given example, the!result!method returns the value calculated
in the code block. After that, the!status!call will print!Kept.

If you change the last two lines in the example, the result may be dif-
ferent. To make the test more robust, add a delay within the code
block.

my!$p!=!start!{!!
!!!!sleep!1;!!

!!!!42!!
}!!

say!$p.status;!# Planned!!
say!$p.result;!# 42!!
say!$p.status;!# Kept!!

Now, it can be clearly seen that the first call of!$p.status!is happening
immediately after the promise has been created and informs us that the
promise is Planned. Later, after the result unblocked the programme
flow in about a second, the second call of!$p.status!prints!Kept, which
means that the execution of the code block is completed and no excep-
tions were thrown.

! 105

Would the code block generate an exception, the promise becomes
broken.

my!$p!=!start!{!!
!!!!die;!!
}!!

try!{!!
!!!!say!$p.result;!!
}!!

say!$p.status;!# This line will be executed
!!!!!!!!!!!!!!!# and will print 'Broken'!!

The second thing you have to know when working with!start!is to un-
derstand what exactly causes an exception. For example, an attempt to
divide by zero will only throw an exception when you try using the re-
sult of that division. The division itself is harmless. In Perl 6, this be-
haviour is called! soft failure. Before the result is actually used, Perl 6
assumes that the result is of the!Rat (rational) type.

$p1 is Kept
my!$p1!=!start!{!!

!!!!my!$inf!=!1!/!0;!!
}!!

!

$p2 is Broken
my!$p2!=!start!{!!
!!!!my!$inf!=!1!/!0;!!
!!!!say!$inf;!!

}!
!

sleep!1;!# Wait to make sure the code blocks are done!
!

say!$p1.status;!# Kept!
say!$p2.status;!# Broken!
!

in and at
The other two factory methods,!Promise.in!and!Promise.at, create a
promise, which will be kept after a given number of seconds or by a
given time. For example:

!106

my!$p!=!Promise.in(3);!!!

!
for!1..5!{!!
!!!!say!$p.status;!!

!!!!sleep!1;!!
}!!

The programme prints the following lines.

Planned&&
Planned&&
Planned&&
Kept&&
Kept&&
&
That means that the promise was kept after three seconds.

anyof and allof
Another pair of factory methods,!Promise.anyof!and!Promise.allof,
creates new promises, which will be only kept when at least one of the
promises (in the case of!anyof) is kept or, in the case of!allof, all of
the promises listed at the moment of creation are kept.

One of the useful examples found in the documentation is a timeout
keeper to prevent long calculations from hanging the programme.

Create the promise!$timeout, which must be kept after a few seconds,
and the code block, which will be running for longer time. Then, list
them both in the constructor of!Promise.anyof.

my!$code!=!start!{!!
!!!!sleep!5!!

}!!
my!$timeout!=!Promise.in(3);!!!
!

my!$done!=!Promise.anyof($code,!$timeout);!
say!$done.result;!!

! 107

The code should be terminated after three seconds. At this moment,
the!$timeout!promise is kept, and that makes the!$done!promise be
kept, too.
!

then!
The!then!method, when called on an already existing promise, creates
another promise, whose code will be called after the “parent” promise
is either kept or broken.

my!$p!=!Promise.in(2);!!

my!$t!=!$p.then({say!"OK"});!# Prints this in two seconds
!

say!"promised";!# Prints immediately!!
sleep!3;!!
!
say!"done";!!

!

The code above produces the following output:
!
promised&
OK&
done&

In another example, the promise is broken.

Promise.start({!!# A new promise!!
!!!!say!1!/!0!!!!# generates an exception!!
!!!!!!!!!!!!!!!!!# (the result of the division is used in say).
}).then({!!!!!!!!# The code executed after the broken line.
!!!!say!"oops"!!

}).result!!!!!!!!# This is required so that we wait until
!!!!!!!!!!!!!!!!!# the result is known.!!
!

The only output here is the following:

oops&

!108

An example
Finally, a funny example of how promises can be used for implement-
ing the! sleep sort! algorithm. In sleep sort, every integer number, con-
sumed from the input, creates a delay proportional to its value. As the
sleep is over, the number is printed out.

Promises are exactly the things that will execute the code and tell the
result after they are done. Here, a list of promises is created, and then
the programme waits until all of them are done (this time, we do it
using the!await!keyword).

my!@promises;!!

for!@*ARGS!+>!$a!{!!
!!!!@promises.push(start!{!!
!!!!!!!!sleep!$a;!!

!!!!!!!!say!$a;!!
!!!!})!!
}!!

!!
await(|@promises);!!
!

Provide the programme with a list of integers:

$!perl6!sleep+sort.pl!3!7!4!9!1!6!2!5!!

For each value, a separate promise will be created with a respective
delay in seconds. You may experiment and make smaller delays such as!
sleep!$a!/!10 instead. The presence of!await!ensures that the pro-
gramme is not finished until all the promises are kept.

As an exercise, let’s simplify the code and get rid of an explicit array
that collects the promises.

await!do!for!@*ARGS!{!
!!!!start!{!

!!!!!!!!sleep!$_;!
!!!!!!!!say!$_;!
!!!!}!

}!
!

! 109

First, we use the $_ variable here and thus don’t have to declare $a.
Second, notice the do!for combination, which returns the result of
each loop iteration. The following code will help you to understand
how that works:

my!@a!=!do!for!1..5!{$_!*!2};!

say!@a;!# [2 4 6 8 10]!

!

Chapter 6
Regexes and Grammars

!112

Grammars in Perl 6 are the “next level” of the well-known regular ex-
pressions. Grammars let you create much more sophisticated text
parsers. A new domain-specific language (DSL), language translator, or
interpreter can be created without any external help, using only the
facilities that Perl 6 offers with grammars.

Regexes
In fact, Perl 6 just calls regular expressions regexes. The basic syntax is a
bit different from Perl 5, but most elements (such as quantifiers!*!or!+)
still look familiar. The!regex!keyword is used to build a regex. Let us
create a regex for the short names of weekdays.

my!regex!weekday!!
!!!!{[Mon!|!Tue!|!Wed!|!Thu!|!Fri!|!Sat!|!Sun]};!!

!

The square brackets are enclosing the list of alternatives.

You can use the named regex inside other regexes by referring to its
name in a pair of angle brackets. To match the string against a regex,
use the smartmatch operator (~~).

say!'Thu'!~~!m/<weekday>/;!!
say!'Thy'!~~!m/<weekday>/;!!

These two matches will print the following.

�Thu�!

!!weekday!=>!�Thu�!

False!!
!

The result of matching is an object of the!Match!type. When you print
it, you will see the matched substring inside small square brackets!!
�...�.

! 113

Regexes are the simplest named constructions. Apart from that, rules
and tokens exist (and thus, the keywords!rule!and!token).

Tokens are different from rules first regarding how they handle
whitespaces. In rules, whitespaces are part of the regexes. In tokens,
whitespaces are just visual separators. We will see more about this in
the examples below.

my!token!number_token!{!<[\d]>!<[\d]>!}!!
my!rule!number_rule!{!<[\d]>!<[\d]>!}!!
!

(Note that there is no need in semicolons after the closing brace.)

The! <[...]>! construction creates a character class. In the example
above, the two-character string!42!matches with the!number_token!to-
ken but not with the!number_rule!rule.

say!1!if!"42"!~~!/<number_token>/;!!

say!1!if!"4!2"!~~!/<number_rule>/;!!

The $/ object
As we have just seen, the smartmatch operator comparing a string with
a regex returns an object of the!Match!type. This object is stored in the!
$/ variable. It also contains all the matching substrings. To keep (catch)
the substring a pair of parentheses is used. The first match is indexed as
0, and you may access it as an array element either using the full syntax!
$/[0] or the shortened one:!$0.

Remember that even the separate elements like!$0!or!$0! still contain
objects of the!Match!type. To cast them to strings or numbers, coercion
syntax can be used. For example,!~$0!converts the object to a string,
and!+$0!converts it to an integer.

! !

!114

'Wed!15'!~~!/(\w+)!\s!(\d+)/;!!

say!~$0;!# Wed!!
say!+$1;!# 15!!
!

Grammars
Grammars are the development of regular expressions. Syntactically,
the grammar is defined similar to a class but using the keyword gram+
mar. Inside, it contains tokens and rules. In the next section, we will
be exploring the grammar in the examples.

Simple parser
The first example of the grammar application is on grammar for tiny
language that defines an assignment operation and contains the printing
instruction. Here is an example of a programme in this language.

x!=!42;!
y!=!x;!!
print!x;!!

print!y;!!
print!7;!!
!

Let’s start writing the grammar for the language. First, we have to ex-
press the fact that a programme is a sequence of statements separated
by a semicolon. Thus, at the top level the grammar looks like this:

grammar!Lang!{!!
!!!!rule!TOP!{!!

!!!!!!!!^!<statements>!$!!
!!!!}!!
!!!!rule!statements!{!!

!!!!!!!!<statement>+!%%!';'!!
!!!!}!!
}!!

Here, Lang!is the name of the grammar, and!TOP!is the initial rule from
which the parsing will be started. The rule’s content is a regex sur-

! 115

rounded by with a pair of symbols, ^ and $, to tie the rule to the begin-
ning and the end of the text. In other words, the whole programme
should match the TOP rule. The central part of the rule, <statements>,
refers to another rule. Rules will ignore all the spaces between their
parts. Thus, you may freely add spaces to the grammar definition to
make it easily readable.

The second rule explains the meaning of statements. The statements
block is a sequence of separate statements. It should contain at least
one statement, as the + quantifier requires, and the delimiter character
is a semicolon. The separator is mentioned after the %% symbol. In
grammar, this means that you must have the separator character be-
tween instructions, but you can omit it after the last one. If there’s only
one percent character instead of two, the rule will also require the sep-
arator after the last statement.

The next step is to describe the statement. At the moment, our lan-
guage has only two operations: assignment and printing. Each of them
accepts either a value or a variable name.

rule!statement!{!!
!!!!|!<assignment>!!

!!!!|!<printout>!!
}!!

The vertical bar separates alternative branches like it does in regular
expressions in Perl 5. To make the code a bit better-looking and simpli-
fy the maintenance, an extra vertical bar may be added before the first
subrule. The following two descriptions are identical:

rule!statement!{!!

!!!!!!<assignment>!!
!!!!|!<printout>!!
}!!

rule!statement!{!!
!!!!|!<assignment>!!
!!!!|!<printout>!!

}!!

!116

Then, let us define what do assignment and printout mean.

rule!assignment!{!!
!!!!<identifier>!'='!<expression>!!

}!!
rule!printout!{!!
!!!!'print'!<expression>!!

}!!

Here, we see literal strings, namely, '='!and!'print'. Again, the spaces
around them do not affect the rule.

An!expression!matches with either an identifier (which is a variable
name in our case) or with a constant value. Thus, an expression is ei-
ther an identifier or a value with no additional strings.

rule!expression!{!!

!!!!|!<identifier>!!
!!!!|!<value>!!
}!!

!

At this point, we should write the rules for identifiers and values. It is
better to use another method, named token, for that kind of the
grammar bit. In tokens, the spaces matter (except for those that are
adjacent to the braces).

An identifier is a sequence of letters:

token!identifier!{!!
!!!!<:alpha>+!!
}!

Here, <:alpha> is a predefined character class containing all the alpha-
betical characters.

A value in our example is a sequence of digits, so we limit ourselves to
integers only.

! !

! 117

token!value!{!!

!!!!\d+!!
}!!

Our first grammar is complete. It is now possible to use it to parse a
text file.

my!$parsed!=!Lang.parsefile('test.lang');!!

If the file content is already in a variable, you may use the
Lang.parse($str) method to parse it. (There is more about reading
from files in the Appendix.)

If the parsing was successful, that if the file contains a valid pro-
gramme, the $parse variable will contain an object of the Match type.
It is possible to dump it (say!$parsed) and see what’s there.

�x&=&42;&&
y&=&x;&&
print&x;&&
print&y;&&
print&7;&&
�&&&
&statements&=>&�x&=&42;&&
y&=&x;&&
print&x;&&
print&y;&&
print&7;&&
�&&
&&statement&=>&�x&=&42�&&
&&&assignment&=>&�x&=&42�&&
&&&&identifier&=>&�x�&&
&&&&expression&=>&�42�&&
&&&&&value&=>&�42�&&
&&statement&=>&�y&=&x�&&
&&&assignment&=>&�y&=&x�&&
&&&&identifier&=>&�y�&&
&&&&expression&=>&�x�&&
&&&&&identifier&=>&�x�&&
&&statement&=>&�print&x�&&

!118

&&&printout&=>&�print&x�&&
&&&&expression&=>&�x�&&
&&&&&identifier&=>&�x�&&
&&statement&=>&�print&y�&&
&&&printout&=>&�print&y�&&
&&&&expression&=>&�y�&&
&&&&&identifier&=>&�y�&&
&&statement&=>&�print&7�&&
&&&printout&=>&�print&7�&&
&&&&expression&=>&�7�&&
&&&&&value&=>&�7�&&
!

This output corresponds to the sample programme from the beginning
of this section. It contains the structure of the parsed programme. The
captured parts are displayed in the brackets�...�. First, the whole
matched text is printed. Indeed, as the TOP rule uses the pair of an-
chors ^!...!$, and so the whole text should match the rule.

Then, the parse tree is printed. It starts with the <statements>, and
then the other parts of the grammar are presented in full accordance
with what the programme in the file contains. On the next level, you
can see the content of both the identifier!and!value tokens.

If the programme is grammatically incorrect, the parsing methods will
return an empty value (Any). The same will happen if only the initial
part of the programme matches the rules.

! 119

Here is the whole grammar for your convenience:

grammar!Lang!{!!
!!!!rule!TOP!{!!

!!!!!!!!^!<statements>!$!!
!!!!}!!
!!!!rule!statements!{!!

!!!!!!!!<statement>+!%%!';'!!
!!!!}!!
!!!!rule!statement!{!!

!!!!!!!!|!<assignment>!!
!!!!!!!!|!<printout>!!
!!!!}!!

!!!!rule!assignment!{!!
!!!!!!!!<identifier>!'='!<expression>!!
!!!!}!!

!!!!rule!printout!{!!
!!!!!!!!'print'!<expression>!!
!!!!}!!

!!!!rule!expression!{!!
!!!!!!!!|!<identifier>!!
!!!!!!!!|!<value>!!

!!!!}!!
!!!!token!identifier!{!!

!!!!!!!!<:alpha>+!!
!!!!}!!
!!!!token!value!{!!

!!!!!!!!\d+!!
!!!!}!!
}!!

An interpreter
So far, the grammar sees the structure of the programme and can tell if
it is grammatically correct, but it does not execute any instructions con-
tained in the programme. In this section, we will extend the parser so
that it can actually execute the programme.

Our sample language uses variables and integer values. The values are
constants and describe themselves. For the variables, we need to create
a storage. In the simplest case, all the variables are global, and a single
hash is required: my!%var;.!!

!120

The first action that we will implement now, is an assignment. It will
take the value and save it in the variable storage. In the assignment
rule in the grammar, an expression is expected on the right side of the
equals sign. An expression can be either a variable or a number. To
simplify the variable name lookup, let’s make the grammar a bit more
complicated and split the rules for assignments and printing out into
two alternatives.

rule!assignment!{!!
!!!!|!<identifier>!'='!<value>!!
!!!!|!<identifier>!'='!<identifier>!!

}!!
rule!printout!{!!
!!!!|!'print'!<value>!!

!!!!|!'print'!<identifier>!!
}!!

Actions
The grammars in Perl 6 allow actions in response to the rule or token
matching. Actions are code blocks that are executed when the corre-
sponding rule or token is found in the parsed text. Actions receive an
object $/, where you can see the details of the match. For example, the
value of $<identifier>!will contain an object of the Match type with
the information about the substring that actually was consumed by the
grammar.

rule!assignment!{!!
!!!!|!<identifier>!'='!<value>!!
!!!!!!!!!!{say!"$<identifier>=$<value>"}!!

!!!!|!<identifier>!'='!<identifier>!!
}!!

If you update the grammar with the action above and run the pro-
gramme against the same sample file, then you will see the substring&
x=42 in the output.

! 121

The Match objects are converted to strings when they are interpolated
in double quotes as in the given example:!"$<identifier>=$<value>".
To use the text value from outside the quoted string, you should make
an explicit typecast:!

rule!assignment!{!!

!!!!|!<identifier>!'='!<value>!!
!!!!!!!!!!{%var{~$<identifier>}!=!+$<value>}!!
!!!!|!<identifier>!'='!<identifier>!!

}!!

So far, we’ve got an action for assigning a value to a variable and can
process the first line of the file. The variable storage will contain the
pair {x!=>!42}.

In the second alternative of the assignment! rule, the! <identifier>!
name is mentioned twice; that is why you can reference it as to an array
element of $<identifier>.

rule!assignment!{!!
!!!!|!<identifier>!'='!<value>!!

!!!!!!{!
!!!!!!!!!!%var{~$<identifier>}!=!+$<value>!
!!!!!!}!!

!!!!|!<identifier>!'='!<identifier>!!
!!!!!!{!

!!!!!!!!!!%var{~$<identifier>[0]}!=!!
!!!!!!!!!!%var{~$<identifier>[1]}!
!!!!!!}!!

}!!

This addition to the code makes it possible to parse an assignment with
two variables: y!=!x. The %var hash will contain both values: {x!=>!
42,!y!=>!42}.

Alternatively, capturing parentheses may be used. In this case, to access
the captured substring, use special variables, such as $0:

! !

!122

rule!assignment!{!!

!!!!|!(<identifier>)!'='!(<value>)!!
!!!!!!{!
!!!!!!!!!!!%var{$0}!=!+$1!

!!!!!!}!!!
!!!!|!(<identifier>)!'='!(<identifier>)!!
!!!!!!{!

!!!!!!!!!!!%var{$0}!=!%var{$1}!
!!!!!!}!!
}!!

Here, the unary ~ is no longer required when the variable is used as a
hash key, but the unary + before $1 is still needed to convert the Match
object to a number.

Similarly, create the actions for printing.

rule!printout!{!!

!!!!|!'print'!<value>!!
!!!!!!{!
!!!!!!!!!!say!+$<value>!

!!!!!!}!!
!!!!|!'print'!<identifier>!!
!!!!!!{!

!!!!!!!!!!say!%var{$<identifier>}!
!!!!!!}!!
}!!

Now, the grammar is able to do all the actions required by the language
design, and it will print the requested values:

42!!
42!!

7!!

As soon as we used capturing parentheses in the rules, the parse tree
will contain entries named as 0 and 1, together with the named strings,
such as identifier. You can clearly see it when parsing the y!=!x!
string:

! 123

statement!=>!�y!=!x�!!

!assignment!=>!�y!=!x�!!

!!0!=>!�y�!!

!!!identifier!=>!�y�!!

!!1!=>!�x�!!

!!!identifier!=>!�x�!!

An updated parser looks like this:

my!%var;!!!
!
grammar!Lang!{!!

!!!!rule!TOP!{!!
!!!!!!!!^!<statements>!$!!
!!!!}!!

!!!!rule!statements!{!!
!!!!!!!!<statement>+!%%!';'!!
!!!!}!!

!!!!rule!statement!{!!
!!!!!!!!|!<assignment>!!
!!!!!!!!|!<printout>!!

!!!!}!!
!!!!rule!assignment!{!!

!!!!!!!!|!(<identifier>)!'='!(<value>)!!
!!!!!!!!!!{!
!!!!!!!!!!!!!!%var{$0}!=!+$1!

!!!!!!!!!!}!!
!!!!!!!!|!(<identifier>)!'='!(<identifier>)!!
!!!!!!!!!!{!

!!!!!!!!!!!!!!%var{$0}!=!%var{$1}!
!!!!!!!!!!}!!
!!!!}!!

!!!!rule!printout!{!!
!!!!!!!!|!'print'!<value>!!
!!!!!!!!!!{!

!!!!!!!!!!!!!!say!+$<value>!
!!!!!!!!!!}!!
!!!!!!!!|!'print'!<identifier>!!

!!!!!!!!!!{!
!!!!!!!!!!!!!!say!%var{$<identifier>}!
!!!!!!!!!!}!!

!!!!}!!
! !

!124

!!!!token!identifier!{!!

!!!!!!!!<:alpha>+!!
!!!!}!!
!!!!token!value!{!!

!!!!!!!!\d+!!
!!!!}!!
}!!

!
Lang.parsefile('test.lang');!!

For convenience, it is possible to put the code of actions in a separate
class. This helps a lot when the actions are more complex and contain
more than one or two lines of code.

To create an external action, create a class, which will later be refer-
enced via the :actions parameter upon the call of the parse!or!
parsefile methods of the grammar. As with built-in actions, the ac-
tions in an external class receive the $/ object of the Match type.

First, we will train on a small isolated example and then return to our
custom language parser.

grammar!G!{!!
!!!!rule!TOP!{^!\d+!$}!!
}!!

!
class!A!{!!
!!!!method!TOP($/)!{say!~$/}!!

}!!
!
G.parse("42",!:actions(A));!!

!

Both the grammar G and the action class A have a method called TOP.
The common name connects the action with the corresponding rule.
When the grammar parses the provided test string and consumes the
value of 42 by the ^!\d!$ rule, the A::TOP action is triggered, and the
$/ argument is passed to it, which is immediately printed.

! 125

AST and attributes
Now, we are ready to simplify the grammar again after we split the as+
signment and printout rules into two alternatives each. The difficulty
was that without the split, it was not possible to understand which
branch had been triggered. You either needed to read the value from
the value token or get the name of the variable from the identifier
token and look it up in the variable storage.

Perl 6’s grammars offer a great mechanism that is common in language
parsing theory, the abstract syntax tree, shortened as AST.

First of all, update the rules and remove the alternatives from some of
them. The only rule containing two branches is the expression rule.

rule!assignment!{!!

!!!!<identifier>!'='!<expression>!!
}!!
rule!printout!{!!

!!!!'print'!<expression>!!
}!!
rule!expression!{!!

!!!!|!<identifier>!!
!!!!|!<value>!!
}!!

The syntax tree that is built during the parse phase can contain the re-
sults of the calculations in the previous steps. The Match object has a
field ast, dedicated especially to keep the calculated values on each
node. It is possible to simply read the value to get the result of the pre-
viously completed actions. The tree is called abstract because how the
value is calculated is not very important. What is important is that
when the action is triggered, you have a single place with the result you
need to complete an action.

The action can save its own result (and thus pass it further on the tree)
by calling the $/.make method. The data you save there are accessible
via the made field, which has the synonym ast.

!126

Let’s fill the attribute of the syntax tree for the identifier!and value
tokens. The match with an identifier produces the variable name; when
the value is found, the action generates a number. Here are the meth-
ods of the actions’ class.

method!identifier($/)!{!!

!!!!$/.make(~$0);!!
}!
method!value($/)!{!!

!!!!$/.make(+$0);!!
}!!

Move one step higher, where we build the value of the expression. It
can be either a variable value or an integer.

As the expression! rule has two alternatives, the first task will be to
understand which one matches. For that, check the presence of the
corresponding fields in the $/ object.

(If you use the recommended variable name $/ in the signature of the
action method, you may access its fields differently. The full syntax is!
$/<identifier>, but there is an alternative version $<identifier>.)

The two branches of the expression method behave differently. For a
number, it extracts the value directly from the captured substring. For
a variable, it gets the value from the %var hash. In both cases, the result
is stored in the AST using the make method.

method!expression($/)!{!!
!!!!if!$<identifier>!{!!
!!!!!!!!$/.make(%var{$<identifier>});!!

!!!!}!!
!!!!else!{!!

!!!!!!!!$/.make(+$<value>);!!
!!!!}!!
}!!

To use the variables that are not yet defined, we can add the defined-or
operator to initialise the variable with the zero value.

! 127

$/.make(%var{$<identifier>}!//!0);!!

Now, the expression will have a value attributed to it, but the source of
the value is not known anymore. It can be a variable value or a constant
from the file. This makes the!assignment!and!printout actions sim-
pler:

method!printout($/)!{!!

!!!!say!$<expression>.ast;!!
}!!

All you need for printing the value is to get it from the ast field.

For the assignment, it is a bit more complex but can still be written in
a single line.

method!assignment($/)!{!!
!!!!%var{$<identifier>}!=!$<expression>.made;!!

}!!

The method gets the $/ object and uses the values of its identifier!
and!expression elements. The first one is converted to the string and
becomes the key of the %var hash. From the second one, we get the
value by fetching the made attribute.

Finally, let us stop using the global variable storage and move the hash
into the action class (we don’t need it in the grammar itself). It thus
will be declared as has!%!var; and used as a private key variable in the
body of the actions:!%!var{...}.

After this change, it is important to create an instance of the actions
class before paring it with a grammar:

Lang.parsefile(!

!!!!'test.lang',!!
!!!!:actions(LangActions.new())!
);!!

!128

Here is the complete code of the parser with actions.

grammar!Lang!{!!
!!!!rule!TOP!{!!

!!!!!!!!^!<statements>!$!!
!!!!}!!
!!!!rule!statements!{!!

!!!!!!!!<statement>+!%%!';'!!
!!!!}!!
!!!!rule!statement!{!!

!!!!!!!!|!<assignment>!!
!!!!!!!!|!<printout>!!
!!!!}!!

!!!!rule!assignment!{!!
!!!!!!!!<identifier>!'='!<expression>!!
!!!!}!!

!!!!rule!printout!{!!
!!!!!!!!'print'!<expression>!!
!!!!}!!

!!!!rule!expression!{!!
!!!!!!!!|!<identifier>!!
!!!!!!!!|!<value>!!

!!!!}!!
!!!!token!identifier!{!!

!!!!!!!!(<:alpha>+)!!
!!!!}!!
!!!!token!value!{!!

!!!!!!!!(\d+)!!
!!!!}!!
}!!

!!
! !

! 129

class!LangActions!{!!

!!!!has!%var;!!
!
!!!!method!assignment($/)!{!!

!!!!!!!!%!var{$<identifier>}!=!$<expression>.made;!!
!!!!}!!
!!!!method!printout($/)!{!!

!!!!!!!!say!$<expression>.ast;!!
!!!!}!!
!!!!method!expression($/)!{!!

!!!!!!!!if!$<identifier>!{!!
!!!!!!!!!!!!$/.make(%!var{$<identifier>}!//!0);!!
!!!!!!!!}!!

!!!!!!!!else!{!!
!!!!!!!!!!!!$/.make(+$<value>);!!

!!!!!!!!}!!
!!!!}!!
!!!!method!identifier($/)!{!!

!!!!!!!!$/.make(~$0);!!
!!!!}!!
!!!!method!value($/)!{!!

!!!!!!!!$/.make(+$0);!!
!!!!}!!
}!!!

!
Lang.parsefile(!
!!!!'test.lang',!!

!!!!:actions(LangActions.new())!
);!!

Calculator
When considering language parsers, implementing a calculator is like
writing a “Hello, World!” programme. In this section, we will create a
grammar for the calculator that can handle the four arithmetical opera-
tions and parentheses. The hidden advantage of the calculator example
is that you have to teach it to follow the operations priority and nested
expressions.

!130

Our calculator grammar will expect the single expression at a top level.
The priority of operations will be automatically achieved by the tradi-
tional approach to grammar construction, in which the expression con-
sists of terms and factors.

The terms are parts separated by pluses and minuses:

<term>+!%%!['+'|'+']!!
!

Here, Perl 6’s %% symbol is used. You may also rewrite the rule using
more traditional quantifiers:

<term>![['+'|'+']!<term>]*!!
!

Each term is, in turn, a list of factors separated by the symbols for mul-
tiplication or division:

<factor>+!!%%!['*'|'/']!!

Both terms and factors can contain either a value or a group in paren-
theses. The group is basically another expression.

rule!group!{!!

!!!!'('!<expression>!')'!!
}!!

This rule refers to the expression rule and thus can start another recur-
sion loop.

It’s time to introduce the enhancement of the value token so that it
accepts the floating point values. This task is easy; it only requires cre-
ating a regex that matches the number in as many formats as possible. I
will skip the negative numbers and the numbers in scientific notation.

token!value!{!!
!!!!|!\d+['.'!\d+]*!!
!!!!|!'.'!\d+!!

}!!

! 131

Here is the complete grammar of the calculator:

grammar!Calc!{!!
!!!!rule!TOP!{!!

!!!!!!!!^!<expression>!$!!
!!!!}!!
!!!!rule!expression!{!!

!!!!!!!!|!<term>+!%%!$<op>=(['+'|'+'])!!
!!!!!!!!|!<group>!!
!!!!}!!

!!!!rule!term!{!!
!!!!!!!!<factor>+!!%%!$<op>=(['*'|'/'])!!
!!!!}!!

!!!!rule!factor!{!!
!!!!!!!!|!<value>!!
!!!!!!!!|!<group>!!

!!!!}!!
!!!!rule!group!{!!
!!!!!!!!'('!<expression>!')'!!

!!!!}!!
!!!!token!value!{!!
!!!!!!!!|!\d+['.'!\d+]*!!

!!!!!!!!|!'.'!\d+!!
!!!!}!!

}!!
!

Note the $<op>=(...)! construction in some of the rules. This is the
named capture. The name simplifies the access to a value via the $/
variable. In this case, you can reach the value as $<op>, and you don’t
have to worry about the possible change of the variable name after you
update a rule as it happens with the numbered variables $0, $1, etc.

Now, create the actions for the compiler. At the TOP level, the rule re-
turns the calculated value, which it takes from the ast field of the ex+
pression.

class!CalcActions!{!!

!!!!method!TOP($/)!{!!
!!!!!!!!$/.make:!$<expression>.ast!!
!!!!}!!

!!!!. . .
}!!

!132

The actions of the underlying rules groups and value are as simple as
we’ve just seen.

method!group($/)!{!!
!!!!$/.make:!$<expression>.ast!
}!!

!!
method!value($/)!{!!
!!!!$/.make:!+$/!!

}!!

The rest of the actions are a bit more complicated. The factor action
contains two alternative branches, just as the factor rule does.

method!factor($/)!{!!

!!!!if!$<value>!{!!
!!!!!!!!$/.make:!+$<value>!!
!!!!}!!

!!!!else!{!!
!!!!!!!!$/.make:!$<group>.ast!!
!!!!}!!

}!!

Move on to the term action. Here, we have to take care of the list with
its variable length. The rule’s regex has the + quantifier, which means
that it can capture one or more elements. Also, as the rule handles both
the multiplication and the division operators, the action must distin-
guish between the two cases. The $<op> variable contains either the *
or the / character.

! 133

This is how the syntax tree looks like for the string with three terms,!
3*4*5:

expression!=>!�3*4*5�!!

!term!=>!�3*4*5�!!

!!factor!=>!�3�!!

!!!value!=>!�3�!!

!!op!=>!�*�!!

!!factor!=>!�4�!!

!!!value!=>!�4�!!

!!op!=>!�*�!!

!factor!=>!�5�!!

!!value!=>!�5�!!

As you can see, there are factor!and!op!entries on the top levels. You
will see the values as $<factor>!and!$<op> inside the actions. At least
one $<factor> will always be available. The values of the nodes will
already be known and available in the ast property. Thus, all you need
to do is to traverse over the elements of those two arrays and perform
either multiplication or division.

method!term($/)!{!!

!!!!my!$result!=!$<factor>[0].ast;!!
!
!!!!if!$<op>!{!!

!!!!!!!!my!@ops!=!$<op>.map(~*);!!
!!!!!!!!my!@vals!=!$<factor>[1..*].map(*.ast);!!
!!!!!!!!!

!!!!!!!!for!0..@ops.elems!+!1!+>!$c!{!!
!!!!!!!!!!!!if!@ops[$c]!eq!'*'!{!!
!!!!!!!!!!!!!!!!$result!*=!@vals[$c];!!

!!!!!!!!!!!!}!!
!!!!!!!!!!!!else!{!!
!!!!!!!!!!!!!!!!$result!/=!@vals[$c];!!

!!!!!!!!!!!!}!!
!!!!!!!!}!!

!!!!}!!
!!!!!
!!!!$/.make:!$result;!!

}!!
!

!134

In this code fragment, the star character appears in the new role of a
placeholder that tells Perl that it should process the data that it can get
at this moment. It sounds weird, but it works perfectly and intuitively.

The!@ops array with a list of the operation symbols consists of the ele-
ments that we got after stringifying the $<op>’s value:

my!@ops!=!$<op>.map(~*);!!

The values themselves will land in the @vals array. To ensure that the
values of the two arrays, @vals!and!@ops, correspond to each other, the
slice of $<factor>!is taken, which starts at the second element:

my!@vals!=!$<factor>[1..*].map(*.ast);!!

Finally, the!expression!action is either to take the calculated value of
group or to perform the sequence of additions and subtractions. The
algorithm is close to the one of the term’s action.

method!expression($/)!{!!

!!!!if!$<group>!{!!
!!!!!!!!$/.make:!$<group>.ast!!
!!!!}!!

!!!!else!{!!
!!!!!!!!my!$result!=!$<term>[0].ast;!!
!!!!!!!!!

!!!!!!!!if!$<op>!{!!
!!!!!!!!!!!!my!@ops!=!$<op>.map(~*);!!

!!!!!!!!!!!!my!@vals!=!$<term>[1..*].map(*.ast);!!!
!!!!!!!!!!!!for!0..@ops.elems!+!1!+>!$c!{!!
!!!!!!!!!!!!!!!!if!@ops[$c]!eq!'+'!{!!

!!!!!!!!!!!!!!!!!!!!$result!+=!@vals[$c];!!
!!!!!!!!!!!!!!!!}!!
!!!!!!!!!!!!!!!!else!{!!

!!!!!!!!!!!!!!!!!!!!$result!+=!@vals[$c];!!
!!!!!!!!!!!!!!!!}!!
!!!!!!!!!!!!}!!

!!!!!!!!}!!
!!!!!!!!!$/.make:!$result;!!
!!!!}!!

}!!

! 135

The majority of the code for the calculator is ready. Now, we need to
read the string from the user, pass it to the parser, and print the result.

my!$calc!=!Calc.parse(!
!!!!!!!!!!!!!!!@*ARGS[0],!!
!!!!!!!!!!!!!!!:actions(CalcActions)!

!!!!!!!!!!!);!!
say!$calc.ast;!!

Let’s see if it works.

$!perl6!calc.pl!'39!+!3.14!*!(7!+!18!/!(505!+!502))!+!.14'!!

42&

&
It does.

!

On github.com/ash/lang, you can find the continuation of the code
demonstrated in this chapter, which combines both the language trans-
lator and the calculator to allow the user write the arithmetical expres-
sions in the variable assignments and the print instructions. Here is an
example of what that interpreter can process:
!

x!=!40!+!2;!
print!x;!

!
y!=!x!+!(5/2);!
print!y;!

!
z!=!1!+!y!*!x;!
print!z;!

!
print!14!+!16/3!+!x;!

!

Appendix

!138

Unicode
The strings in Perl 6 are internally handled in the format called NFG
(Normalization Form Grapheme). From a practical point of view, that
means that, for any symbol, you can get its NFC, NFD, NFKC and
KFKD forms. I will refer you to read about the details of these formats
to the Unicode standard. In simple words, these are different canonical
and decomposed forms of a symbol.

There are four methods with those names, and you may call them on
character strings:

say!$s.NFC;!# codepoint!!
say!$s.NFD;!!
say!$s.NFKC;!!

say!$s.NFKD;!!
!

The full canonical name of a character is returned by the method
uniname:

say!'λ'.uniname;!# GREEK SMALL LETTER LAMDA!!

In the string class, the encode method is defined; it helps to see how
the string is built internally in one of the Unicode charsets:

my!$name!=!'naïve';!!

say!$name.encode('UTF+8');!!# utf8:0x<6e 61 c3 af 76 65>!

say!$name.encode('UTF+16');!# utf16:0x<6e 61 ef 76 65>!

As an exercise, examine the output for the following characters. The
unidump function, shown below, prints some characteristics of the
Unicode characters.

unidump('☭');!!
unidump('ы');!!
unidump('å');!!
unidump('é');!!

! 139

unidump('ϔ');!!

One of the few characters, for which all the four
canonical forms are different.!!
!

unidump('й');!!
unidump('²');!!
unidump('Æ');!!!

!
sub!unidump($s)!{!!
!!!!say!$s;!!

!!!!say!$s.chars;!# number of graphemes!
!!!!say!$s.NFC;!!!# code point!!
!!!!say!$s.NFD;!!

!!!!say!$s.NFKC;!!
!!!!say!$s.NFKD;!!

!!!!say!$s.uniname;!# the Unicode name of the character!!
!!!!say!$s.uniprop;!# the Unicode properties of the first grapheme!
!!!!say!$s.NFD.list;!# as a list!!
!!!!say!$s.encode('UTF+8').elems;!# number of bytes!!
!!!!say!$s.encode('UTF+16').elems;!!

!!!!say!$s.encode('UTF+8');!# as utf8:0x<...>
!!!!say!'';!!
}!!
!

The NFKC and NFKD forms, in particular, transform the sub- and su-
perscript to regular digits.

say!'2'.NFKD;!# NFKD:0x<0032>!!

say!'²'.NFKD;!# NFKD:0x<0032>!!

!

The unimatch!function indicates whether a character belongs to one of
the Unicode character groups.

say!unimatch('�',!'CJK');!#!True!

!

Be warned, because some characters can look the same but are in fact
different characters in different parts of the Unicode table.

say!unimatch('ї',!'Cyrillic');!# True!!
say!unimatch('ï',!'Cyrillic');!# False!!

!140

The characters in the example are CYRILLIC!SMALL!LETTER!YI! and!
LATIN!SMALL!LETTER!I!WITH!DIAERESIS, respectively; their NFD
representations are 0x<0456!0308>!and!0x<0069!0308>.

It is also possible to check the Unicode properties using regexes:

say!1!if!'э'!~~!/<:Cyrillic>/;!!

say!1!if!'э'!~~!/<:Ll>/;!# Letter lowercase!
!

Use the uniprop method to get the properties:

say!"x".uniprop;!# Ll
!

To create a Unicode string directly, you may use the constructor of the
Uni class:

say!Uni.new(0x0439).Str;!!!!!# й!!
say!Uni.new(0xcf,!0x94).Str;!# Ï!!
!

Also, you can embed copepoints in the string:

say!"\x0439";!!!# й!
say!"\xcf\x94";!# Ï!

Whatever (*)
In Perl 6, the star character * can be associated with one of the prede-
fined classes, Whatever and WhateverCode.

We’ll start with an object of the Whatever class.

say!*.WHAT;!# (Whatever)!

The construction like 1!..!* creates a Range object, where its upper
limit is not fixed to any particular number.

! 141

say!(1!..!*).WHAT;!# (Range)!

Here is an example with a loop that prints the numbers from 5 to 10
line by line:

for!(5!..!*)!{!!

!!!!.say;
!!!!last!if!$_!==!10;!!
}!!

!

Now, try array indices and ask to take all the elements starting from the
fourth one:

my!@a!=!<2!4!6!8!10!12>;!!

say!@a[3!..!*];!# (8 10 12)!!

The “three dots” operator in combination with a star creates a se-
quence.

say!(1!...!*).WHAT;!# (Seq)!

You can use it when you need a lazy and potentially infinite list. A lazy
list is a list whose elements are evaluated only when they are necessary
for the execution of the programme.

In the following example, an array does not know its size, but you can
read infinitely from it; the lazy list will supply new elements:

my!@a!=!(100!...!*);!!!
!

for!(0!..!5)!{!!
!!!!say!"Element!$_!is!@a[$_]";!!
}!!

!

This programme will print five lines corresponding to the first five ele-
ments of the @a array, which contain values from 100 to 105, including
105. If you change the range in the for loop from 0!..!5 to 0!..!*,
you will get a programme that prints infinitely.
!

!142

It is possible to modify the algorithm for generating the new values of
the sequence by giving a hint to the compiler:

my!@a!=!(1,!2!...!*);!!!!# step by 1!!
say!@a[1..5];!!!!!!!!!!!!# (2 3 4 5 6)
!

my!@b!=!(2,!4!...!*);!!!!# even numbers!
say!@b[1..5];!!!!!!!!!!!!# (4 6 8 10 12)
!

my!@c!=!(2,!4,!8!...!*);!# powers of two!
say!@c[1..5];!!!!!!!!!!!!# (4 8 16 32 64)

Together with a list repetition operator, xx, the Whatever object forms
an infinite list containing the same value.

my!@default_values!=!'NULL'!xx!*;!

!

Now, let’s move on to the WhateverCode object. It is an anonymous
code block, which is a good match for simple functions, such as these:

my!$f!=!*!**!2;!!# square!
say!$f(16);!!!!!!# 256!!!
!

my!$xy!=!*!**!*;!# power of any!!
say!$xy(3,!4);!!!# 81!!
!

In Perl 6, the transformation from a code with a star to an anonymous
code block is called whatever-currying. In the traditional style of pro-
gramming, you introduce a variable to get the same result. In Perl 6, a
compiler creates that for you. The following two examples are equiva-
lent to the two above.

An anonymous code block with one argument $x
my!$f!=!+>!$x!{$x!**!2};!!

say!$f(16);!# 256!
!

A block with two arguments; names are alphabetically sorted
my!$xy!=!{$^a!**!$^b};!!

say!$xy(3,!4);!# 81!
!

! 143

Whatever-currying is also happening, for example, when we want to
refer to the last elements of an array using negative indices. In the fol-
lowing example, we pick array elements from the fourth to the second-
to-last one.

my!@a!=!<2!4!6!8!10!12>;!!

say!@a[3!..!*+2];!# (8 10)!!
!

In Perl 5, you could get the last element of an array with the +1 index.
In Perl 6, the access @a[+1] will generate an error:
&
Unsupported&use&of&a&negative&A1&subscript&to&index&from&
the&end;&in&Perl&6&please&use&a&function&such&as&*A1& &&

So, you need to add a star:

say!@a[*+1];!# 12!!
!

Here, the compiler will convert @a[*+1] into the following code:

@a[@a.elems!+!1]!

!

Another common use case of WhateverCode is to provide a compiler
with a rule for generating infinite sequences.

my!@f!=!0,!1,!*!+!*!...!*;!

say!@f[1..7].join(',!');!# 1, 1, 2, 3, 5, 8, 13!

This example creates a lazy list containing the Fibonacci numbers. The
!+! construction will be implicitly replaced with something like {$^a!
+!$^b}. Note that the first two stars in the example are part of what
will become an anonymous code block, while the last one is a single
Whatever object.
!

!144

Files
To get the content of a file, use the slurp built-in function, which
reads the whole file and returns a string.

say!slurp!"file.txt";!!

The function that does the opposite is called spurt, it writes the string
to a file.

Let us implement the Unix’s cp command in Perl 6.

my!($source,!$dest)!=!@*ARGS;!!!
!
my!$data!=!slurp!$source;!!

spurt!$dest,!$data;!!
!

By default, either a new destination file will be created or rewritten if it
already exists. You can open the file in the append mode by adding the
:append value in the third argument:

spurt!$dest,!$data,!:append;!!

!

Another mode, :createonly, generates an error if the file exists.

spurt!$dest,!$data,!:createonly;!!
!

Both slurp and!spurt!accept an argument with the encoding name:

my!($source,!$dest)!=!@*ARGS;!!!
!

my!$data!=!slurp!$source,!enc!=>!'UTF+8';!!
spurt!$dest,!$data,!enc!=>!'UTF+16';!!
!

The Str class inherits (from the Cool class) the IO method that returns
an object of the IO::Path class. It contains some useful information
about the file.

! 145

For example, this is how you can get the absolute path to a local file:

say!'file.txt'.IO.abspath;!!
!

The IO.dir method prints the content of a directory:

say!'.'.IO.dir;!!

!

The IO.extension method returns an extension of a file:
!
say!$filename.IO.extension;!
say!$filename.IO.extension;!

Finally, there are one-letter named methods for making checks of the
file’s or directory’s existence or checking its properties:

say!1!if!'file.txt'.IO.e;!# same as -e 'file.txt' in Perl 5 (file exists)!
say!1!if!'file.txt'.IO.f;!# -f (is a file)!!
say!1!if!'..'.IO.d;!!!!!!!# -d (is a directory)!!

Programming for the Internet
The simplest way to build a web server in Perl 6 is to use a PSGI server
called Bailador. This is a module that you can find on the official page
with the list of Perl 6 modules: modules.perl6.org. If you are using the
Rakudo Star distribution, use the panda* command line utility to install
the module.

$!panda!install!Bailador!

Bailador copies the interface of the well-known framework Dancer for
Perl 5. The name is the same but in Spanish.

* At the moment of writing this book, panda was about to become outdated, and the new

recommended tool will be zef. Please refer to the documentation of your Perl 6 distri-
bution on how to install modules.

!146

Here is the minimal programme that implements the web server.

use!Bailador;!!!
!

get!'/'!=>!sub!{!!
!!!!'Hello,!world!'!!
}!!!

!
baile;!
!

The programme describes the action, which the server does in response
to the request to its home page. The baile (dance in Spanish) method
starts the main loop of the PSGI server.

Run the programme:

$!perl6!web1.pl!

!

You will get the output informing you that the server is ready to accept
requests.

Entering&the&development&dance&floor:&http://0.0.0.0:3000&
[2016A12A27T20:27:34Z]&Started&HTTP&server.&

Open that page in a browser, and you will see the desired output: “Hel-
lo, world!”

The next step is to parse the URL and respond accordingly. Bailador
allows extract parameters from the URL with the colon syntax:

get!'/:name'!=>!sub!($name)!{!!
!!!!"Hello,!$name!"!!
}!!

Please note that you cannot omit the space after the sub keyword.
There is an alternative. As the sub is anonymous, you may use the
pointy block instead:

! !

! 147

get!'/:name'!=>!+>!$name!{!!

!!!!"Hello,!$name!"!!
}!

Add it to the programme, restart the server, and go to, for example,
http://0.0.0.0:3000/abc. You should get the “Hello, abc” output in
the browser.

Bailador is happy to accept regexes instead of the fixed URLs. For ex-
ample, let’s create the URL /square+of/N, where the N can be any
non-negative integer.
!
get!/!'square+of/'!(<digit>+)!/!=>!sub!($n)!{!!
!!!!$n!*!$n!!

}!!

The regex pattern /!'square+of/'!(<digit>+)!/!contains the cap-
turing part, and so the variable $n will be set to the number from the
URL. As Bailador reads the address patterns in the order they appear in
the file, make sure to put the method above the handler of /name.
Now, test how it works at http://0.0.0.0:3000/square+of/5; it
should print 25.!

It is possible to access some environment variables in the URL handler.
Use the request method and take the request.env hash from it, as is
demonstrated in the example:

get!'/ua'!=>!sub!{!!
!!!!request.env<HTTP_USER_AGENT>!~!
!!!!'<br!/>'!~!!

!!!!request.env<QUERY_STRING>!!
}!!

The page http://0.0.0.0:3000/ua?key=value will now print the
user agent name and list the query parameters of the request.

After we generate the output from the Perl code, let us move to using
templates. Bailador will search for the template files in the views di-
rectory.

!148

Save a simple text template to views/test.tt, and use it in the server
like this:
!
use!Bailador;!!!

!
get!'/form'!=>!sub!{!!
!!!!template!'test.tt';!!

}!!!
!
baile;!!

!

To print something inside the template, pass the data in hash:
!
get!'/form/:name'!=>!sub!($name)!{!!
!!!!template!'name.tt',!{name!=>!$name}!!

}!!
!

You can access the data from a template. It receives the argument con-
taining everything that you just passed.
!
%!my!($params)!=!@_;!!!

!
Hi,!<%=!$params<name>!%>!!!

!

Database access
Install the DBIish module to get a powerful tool for working with data-
bases*:

$!panda!install!DBIish!

You also will need the database driver; for example, libmysqlclient for
working with MySQL. Check the documentation of the DBIish module
on modules.perl6.org if you want to work with a different database en-
gine.

* See the footnote in the previous section regarding the tool for installing modules.

! 149

The module provides an interface similar to the DBI’s in Perl 5. You
obtain a database handler, $dbh, and they work via the statement han-
dler, $sth. Let us see some details in the following example.

use!DBIish;!!!

!

Connecting to a remote database
my!$dbh!=!DBIish.connect(!!
!!!!'mysql',!!

!!!!:host<example.com>,!
!!!!:port(3306),!
!!!!:database<test>,!!

!!!!:user<test>,!!
!!!!:password<test_password>!!
);!!!

!

Now, prepare the statement to get all the data from a table
my!$sth!=!$dbh.prepare("select!*!from!calendar");!!

And execute the request
$sth.execute;!!!

Fetch all the rows
my!@arr!=!$sth.allrows;!!
say!@arr;!

!

Finalise the statement and close the connection
$sth.finish;!!
$dbh.dispose;!!

!

There are several ways of fetching data. The one shown in the code is
the $sth.allrows method that returns a list of lists with the data from
the table.

Alternatively, rows can be read one by one using the $sth.row method.
To get the row data in a hash, add the :hash attribute:
$sth.row(:hash).
!

my!$sth!=!$dbh.prepare("select!what,!when!from!calendar");!!
$sth.execute;!!!
!

my!$row_hash!=!$sth.row(:hash);!!
say!$row_hash;!

!150

With the insert statements, placeholders may be used to avoid the
need of escaping the values before injecting them into the SQL query.
In the following example, a new row will be written to the database
table. The actual values are passed to the execute method.

my!$sth!=!$dbh.prepare(!

!!!!"insert!into!calendar!values!(?,!?)"!
);!!
!

$sth.execute('2017+01+01',!'Wake!up');!

!

Conclusion
!

That’s all, folks. We discussed a lot of things and how they work in
Perl 6. I hope that this has been a good introduction to the language for
you and that you will be able to use it in your new projects.

There are still many topics left. Your starting point for the new bits of
information should be the language’s official web page, perl6.org. The
site contains extensive documentation and many examples.

All the code examples in the book were tested in December 2016 with
the Rakudo Star compiler, version 2016.11. You can download it from
rakudo.org/how-to-get-rakudo. You may also check the small example
files from the book in the repository at github.com/ash/perl6-at-a-
glance.

Remember that Perl 6 and its compilers are still in development; that
means that both the code in this book and in the documentation on the
site may work incorrectly or even not compile. If you experience any
problems, you are always welcome to ask for advice in the Perl 6
Community (there are a few links at perl6.org/community) or in the
Perl6 group on Facebook.

Regarding the content of the book, contact me directly via e-mail at
andy@shitov.ru.
!
!
!

!

Andrew Shitov
Amsterdam, 28 December 2016

!

