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Abstract

Problems of analysis of symmetric, bell-shaped signals registered in a discrete
form are considered. Fast and direct methods for their processing are proposed on
the basis of vanishing momentum wavelets. Unlike previous works wavelets of higher
order are used extensively in these methods. A new wavelet feature is observed: the
permanence of their relative square. It makes possible to choose an optimal scale
coeflicient that is common for several wavelet-transforms. Numerical simulations
show the high accuracy of proposed algorithms comparable with the more laborious
methods of a gaussian fitting to discrete measurements.
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1 Introduction

Analysis of signals registered in a discrete form is of importance for data
processing in almost any field of experimental physics (see, for example [1-3]).
In many important cases the signal form is symmetric, bell-shaped, in par-
ticular, a gaussian is the most often used approximant due to many physical
reasonings [1,2,4]. The problem is to evaluate parameters of such a discrete
signal, i.e. its position, amplitude and also its half-width in presence of noise,
detector uncertainties and influence of other close signals. Rigid timing re-
quirements inherent in contemporary detectors demand to elaborate a fast
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and direct methods for the signal parameter evaluations. Passing through a
detector a particle produces an electronic shower. Its bell-shape surface can
be approximated by 2D-gaussian:
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where xg, yo — are the shower center coordinates, A - is the maximum am-
plitude. The shower half-widths o,, 0, by corresponding axes are supposed to
be known for the considered detector domain (or can be calculated from the
known drift velocity). Due to the factorized wiev of (1) the problem usualy is
reduced to handle several 1D-gaussians:
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g(z; A, 20) = Aexp (_M) . (2)

In such 1D presentation (2) a doublet of two overlapping signals can be ap-
proximated as
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G(x: A, 213 B, as) = Aexp (—M) + Bexp (—M) NG

In the process of registration a signal is to be discretized as a histogramm
{hi} on the interval (2peq, Tend),

Tk
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where x; = x4y + k7, 7 — 1s the bin width. Besides an electronic noise gives a
contribution to each histogram bin. Noise values are, in principle, correlated,
but according to the earlier study [8] we treat them as independent normal
variables with rms equal up to 10% of the mean amplitude. The weak signals
are cut off on the threshold depending on the maximum noise level. However,
despite of noise thresholding, some background signals contaminating useful
signals can also appear above the threshold level.

Well-known restrictions of Fourier analysis motivated our interest to such a
modern signal analysis mean as wavelet-transfom [5] The wavelet transform
of a signal f(x) is determined as
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with the normalizing constant

C¢:27T/ |¢|(j|)| dw < oo, (6)

where ;/N)(w) — is the Fourier transform of the wavelet ¢(x). The condition
Cy < oo 1s, at the same time, the condition of the wavelet ¢ existence. It
would be true, in particular, if the first n — 1 momenta are equal to zero:

/ |z|"(x)de =0, 0<m <n. (7)

According to the gaussian-like shape of our signals it is natural to choose, as
a basic wavelets, the family of vanishing momentum wavelets (VMW),
since they are generated by gaussian distribution function:

dn

gn(x) = (—1)n+1%6_l’2/2, n>0 (8)

The VMW family is called so because the condition (7) is always holds for it.
Two first of VMW are most known [5]:
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gi(z) = —we” 7, ga(a) = (L —a®)e™ 7.
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(the second one is also known as "the Mexican hat”)

Nevertheless, we found that the power of the wavelet-analysis can be really
extended, if we would use the higher order VMW, in particular,

(M)
(M)
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g3(7) = 3z — 2%)e” 7, ga(z) = (627 —2* — 3)e” 7.
The normalizing coefficients of these wavelets C,, are 2m(n — 1)!

2 VMW properties

Between useful VMW properties we stress two, which are related to the VMW
derivatives and integrals:

dg;;;w) = —gn+1(l‘), /gn(x) = gn_1(:1?1) — gn_1(:1:2). (9)

The most important VMW property consists in preserving their relative square,

which we define as [6]
Flgn(x)] d

= (10)
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The first four of VMWs are shown in Fig.1. As we have checked, the relative
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Flg 1. First four of VMWs Flg 2. Their relative squares

VMW squares calculated for the first ten of VMWs are almost equal forming
a specific narrow plait. One can see that clearly in Fig.2 for the first four
VMWs. That is used below in sect. 4 for the optimal choise of the dilation

parameter.

It is a remarkable fact that the wavelet transformation of a gaussian (2) looks
as the corresponding wavelet. Therefore the general expression for the n-th
wavelet coefficient has the following form:

Agq't1/2 b—=z
gn(a7b)g = gn ( 0) 9
(n —1)lsnH! s

where we denote s = va? + o2,

Thus all above-mentioned VMW features are valid also for the gaussian wavelet-
transfom. In particular, at the central point © = x¢ coefficients of odd VMWs

W, (a,x0)g and W, (a, x9)g equal to zero, while coefficients of even, symmet-

rical wavelets W, (a, x¢)g and Wy, (a, xo)g obtain at this point their maximum

(absolute) values

Aca®? 3 Aga/?
W92(a7x0)g = 3 W94 (Cl,l‘o)g = _\/; s (11)
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To present the wavelet coefficients of a doublet (3) of two gaussians we use
the simplifying normalization:

nt+1/2
Wn(a,b)g = 7Wgn(a,b)g7 wy, = —Aaa .
Wy, (n —1)lsnH!
Then we obtain
W, (a,b)G' = Ag, (b_xl) + By, (6—1?2) (12)
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3 Methods to estimate signal parameters

At this section we derive, first, VMW-based estimates of parameters for ”ideal”,
non-distorted, non-histogrammed signals. These estimates give us the good ba-
sis for direct and, therefore, fast algorithms. However in any real registration
process various distortions are brought in. So we have then to study, how much
these distortions could influence on the wavelet-transfom of such a distorted
signal. Only on the basis of this study we can propose recommendations for an
optimal choice of shift and dilation VMW parameters, which would guarantee
the applicability of proposed algorithms.

Single gaussian signal. For the single gaussian signal we can calculate
wavelet transform in a few points and solve the system of corresponding equa-

tions. However, applying the ratio of different wavelets we can eliminate the
__(b=ap)
exponent e( 2(“2+°2)) and obtain the signal position explicitly. For instance,

the ratio Wy, (a,b)g/W,, (a,b)g gives

\/5(@2 —I_ 0-2) Wgs (Cl, b)g . (13)
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The true sign in (13) is easy to choose when one would calculate the co-
efficients W, (a,b)g and W,, (a,b)g in a point, which is far enough from the
supposed signal position.

The amplitude value can be evaluated via the value of the half-width of the
signal o (if known) and one of expressions (11). But in the case when the value
of o is unknown it can be also evaluated using W, (a, x0)g/W,, (a, x0)g:

(1 + fW” ) . (14)

Again, the point, in which the ratio Wy, (a,b)g/W,, (a,b)g is calculated, must
be chosen as close to the signal center, as possible.

Doublet of close gaussians. For a doublet of two close signals we can use
either

— four first wavelets calculated in one point (method WTS - Wavelet Trans-
form System)
— or one of those wavelets (we choose gq) calculated in four different points

(method go-W'TS).
The corresponding systems of equations are:
for WTS: F, = W,(a,0)G — W, (a,b)h =0, n=1,2,3,4;
for go-WTS: F,, = Ws(a, b,)G — Wa(a,b,)h =0, n=1,2,3,4;



where n-th wavelet coefficient of a histogram h
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is calculated from the source histogram only one time for all iterations. ¢
in go-WTS method are taken in four following points: by = b — h/2, by =
b+ h/2, b3=0b —h, by=>by+ h with specially chosen h.

Newton’s method is applied to solve these non-linear systems
DAX =F, X = (x1,%x3,A,B)T, F=(F;,F;,F5,Fy)7,

where D is the matrix of partial derivatives of F,, with respect to components
of X. The first approach X(© is obtained by a rough estimation of the signal
parameters from the source histogram h (see, for example, [8]). The next
approach is obtained as XV = X(© 4+ AX and so on iteratively, unless a
wanted accuracy is reached. Calculations of the partial derivatives matrix D
can be considerably simplified due to the above mentioned VM W-feature (9).

4 Optimal choise of shift and dilation parameters

As we assume, the choice of VMW parameters should minimize the influence
of various signal distortions. Some results of a study of this influence are
described below. Here we focused ourselves especially on the signal distortion
due to digitizing and its contamination by additive noise. A histogrammed
signal can be considered as

iLkth-I-e’:‘k, k=1,N, (15)

where hy, is non-distorted signal obtained according to ( 4) and ¢, is the noise
addition. Therefore wavelet-coefficients should also consists of two parts

Wgn(a7b)71 = Wgn(a7b)h+ Wgn(a7b)€' (16)
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The non-distorted gaussian signal with the amplitude A = 1, zero center and
o = 1.25 was then histogrammed for different shift values b. The wavelet-
transforms W, (a,b)h, n = 1,2,3,4 of this signal as the functions of b are



depicted in Fig.1. Comparing them with corresponding rms values from Fig.3,
one can see that even the maximum wavelet coefficients of noise are two orders
of magnitude less than wavelet-coefficients Wy, (a, b)h for almost all values of
b except small, clearly distinctive areas for odd and even wavelets. That gives
us the following rule for optimal choosing of the shift parameter b:

- odd wavelets ¢; and g3 must be calculated in points on signal tails;

- even wavelets g and g4 must be calculated in points cituated as close to the
signal center as possible.

The rule to determine the optimal delation parameter a can be derived from
the expression (10) for the invariant relative square w

v —1
o =

= v =a,— 1. 1
2l —wy VT2 0w (17)

5 Simulations and results

The amazing insensitivity of wavelets to various signal distortions is widely
known (see, for example, D.Donoho’s article in [5]). However it was necessary
to test more in details the accuracy and efficiency of proposed methods and
the dependences of their results on such factors as (i) distance d = |xy — 24|/0
between two components of the doublet signal (3), (ii) noise level and bin
shedding, (iii) detector granularity degree. We use Monte-Carlo simulations
to fulfil this study. The data were simulated as follows. The gaussian dou-
blet (3) with ¢ = 4 was simulated and histogrammed according to (4) with
bin number N and bin-size 1 as it depicted in Fig.4-a (N=10) and Fig.4-b
(N=32). Both peak positions and amplitudes are randomly distributed (ex-
ponential distribution with the mean A was used to generate amplitudes. The
single gaussian signal (2) needed to test the accuracy of the formula (14) was
simulated analogically. Then discretized signals were distorted by adding to
the value in each histogram bin a noise value distributed by the normal or (op-
tionally) by the uniform distribution with o5 = 0.12). Then weak signals
with the amplitude less than 10% of A,,,, were truncated.

Both methods WTS and ¢go-WTS were applied to estimate doublet parameters
x1, 29, A, B. Calculating wavelet-coefficients, we set up the dilation parameter
a according to (17) with w = 0.9 and v = 2|Z — #;|, where &, % are the
estimates of position parameters obtained on the current iteration. The max-
imum number of iteration was set to 10, but it was usually not more than
3-4.

Each point on the dependence plot was obtained by repeating the whole proce-
dure 1000 times. This procedure was implemented as a special WINDOWS-95
software package allowing to vary all simulation parameters and to visual-
ize calculated signals and spectra. Two examples of applying this package to
study the influence of various signal distorsions on its VMW spectrum are pre-



sented in Fig.4. 2D wavelet-spectra are depicted as gray-level images ranging
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Flg 4. Effects of various granularity, contamination and thresholding. (a) Histogram of a doublet with

d)

low granulatrity (10 bins). (b) The same signal, but discretized for 32 bins, then noise with 30% amplitude
from the signal maximum is added to each histogram bin and cut-off is done on the 10% level. (c) An overal
view of the wavelet-spectrum of the discretized signal (a). It stays the same for higher granular, distorted

and cutoff signal (b) (d) High frequency part of spectrum for signal (b)

from black for minimum to white for maximum values. One can clearly see
the striking robustness of the VMW to the various signal distortions: only a
relatively thin high-frequency layer of the spectrum is violated while the rest
of it looks as a spectrum of the non-distorted signal. As one can see in Fig.5, a
similar robustness was developed when three of bins of the histogram depicted
in Fig.4(b) were set to zero imitating a malfunctions of data channels.

Results of RMS-error dependence of the signal position estimation on the
distance between two signal components determined by WTS and ¢o-WTS
methods are shown in Fig.6, where distances are given in the signal half-
width units common for both components. Error values are given in bin-width.
The first method has better accuracy when the distance between two peaks
in a doublet is less than 20, although when it approaches 1o-distance, the
accuracy increases considerably for both methods. Relative RMS-error of the
estimate 6, of the single gaussian half-width grows linearly with random noise
(in percents of /_1) as 6, = 0.20,0isc + 0.01. Dependence of 6, on detector
granularity is presented in Fig.7.

As one can see from the given examples, wavelet transform can develop even
fine effects of asymmetry and other signal deviations from an ideal gaussian
shape. We do not touch here questions of a quantitative estimations of such
deviations, since it would bring us to the different topic related to wavelet
series expansion. One can also indicate these deviations by calculating the
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Fig.5 Bin shedding effect: (a) the
source signal is the same as in
Fig.4(b) (with 10% noise only),
but three bins are lost from its
histogram. (b) wavelet-spectrum
of this distorted signal. (c) high

frequency part of spectrum
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ularity (bin number)

third and the fourth momenta of the histogrammed signal. We did not also
compare here accuracies of the wavelet analysis and the Fourier approach,
which is more familiar for experimentalists, since it was already done in [7] for
the problem of resolving doublets of close gaussian discretized signals. As it
was shown there in a simplified condition, when the position of one of signals
is fixed, the rms of the wavelet estimation of the distance between both peaks
is 20% better than of the Fourier method.

6 Conclusion

The direct formulae are derived to calculate location, amplitude and scale
parameters for a single signal and doublets of overlapped signals. Unlike our
previous work [7] wavelets of higher order are used extensively in these al-



gorithms. The observed VMW features allows to choose the optimal wavelet
parameters. In particular, the stability of the VMW relative square was found.
It makes possible to choose the dilation parameter that is common for several
wavelet-transforms. Numerical simulations show the high accuracy of proposed
algorithms is comparable with the more laborious methods of a gaussian fitting
to discrete measurements [8]. This study was very facilitated by developing a
special user friendly software package for the visualization of simulated signals
and their 2D-wavelet spectra for any of the first six gaussian wavelets.

Approaches published here and in our previos work [6] are already successfully
used by some of the JINR physicists [9], although for different purposes.

Authors would like to thank drs M.Altaiski and M.Khvastunov for the fruitful

discussions and some useful remarks.
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