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1 Abstract

Wavelet analysis is, among others, one of the most effective method
of experimental data processing. Unlike traditional Fourier trans-
form it is more informative in various applications because it pro-
vides one extra degree of freedom for analysis.

There are known a lot of methods of data analysis developed
on the basis of continuous and discrete wavelets, such as wavelets
suggested by Daubechies, Mallat, Meyer etc. (see for example [1]).
Besides a whole family of fast-computed wavelets named as wavelets
of the second generation appeared recently [2]. Therefore experi-
mentalists are inevitable faced with the problem of choosing the
type of wavelets and the algorithm of their implementation that
have to be most suitable for a concrete application. It imposes the
need in developing a basic set of test problems as a benchmark, on
which one could compare capabilities of different types of wavelets.

In this paper in order to compare efficiency a comprehensive
set of benchmarking tests is developped, which is used to compare
abilities of continuous wavelets of the vanishing momenta type [3]
as well as the second generation wavelets constructed on the ba-
sis of the lifting scheme [2]. A proposed set of tests is based on
processing of various types of pure and contaminated harmonic sig-
nals, delta-function, study of the signal phase dependence and the
gain-frequency characteristics. Results of a comparative multiscale
analysis allow to reveal advantages and flaws of considered types of
wavelets.

2 Filtering Data with Wavelets

Wavelet analysis provides a variety of tools for signal processing,
which help to extract components out of source signal and to see
what the signal looks like at different scales. We use the term
filtering to refer something more than just denoising. Wavelet filters
are so multifunctional that can be used not only for the purpose
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of noise suppression but for searching of different components of
the signal as well. Being distinguishable by wavelets, some of those
components might not be clearly observed before wavelet analysis
is applied.

The idea of wavelet filtering is simple. First we build the set of
wavelet coefficients for the given signal. This set is called a wavelet
spectrum. Shift and scale parameters of analyzing wavelet may vary
in wide ranges and are defined by the task of processing. Having a
spectrum, it is possible to estimate, visually or automatically, what
is the structure of the signal at different scales at each moment.

After the stage of processing mentioned above is passed there are
two ways to continue. Both of them require a procedure of inverse
wavelet transform. Before the inverse transform we set to zero
some of wavelet coefficients, in other words, ignore them. Thus the
inverse transform will use only the part (or several disjoint parts)
of the spectrum of the signal.

2.1 Scale Selection
The appearance of wavelet spectrum of the signal allows to view
the scales of components which present in the source. If it is known
a priori which scales are to be extracted it is possible to run the in-
verse transform with the desired scales only. And it is also possible
to ignore some components of prescribed scales before the inverse
transform. As an example we can analyze electrocardiographical
data. Besides the heart pulse signals it includes the signal induced
by the power supply (50 or 60 Hz) and the low frequency additive
background due to variations of the resistance of electrical contact
body-sensor. So we can select the scales which correspond to fre-
quencies within these limits to extract the desired hea;rt pulses.



2.2 Thresholding

Obtained wavelet coefficients represent the weight of parts of the
signal with different scales. The greater amplitude of the com-
ponent the higher corresponding wavelet coefficient. Thus, before
running the inverse transform, coefficients which absolute values are
under some predefined threshold might be deleted from the array.
For example, noise component could bring small wavelet coefficients
into the spectrum, and by ignoring them the inverse transform re-
moves the noise from the signal.

3 Types of Wavelets
There is a vast variety of wavelets with their own unique prop-
erties. We focus ourselves here on wavelets of so-called Vanishing
Momenta Wavelet Family (VMWF), sometimes referred to as Gaus-
sian Wavelets. VMWF wavelets represent the first generation of
wavelets. Recently developed methods use so-called lifting scheme
wavelets (LSW), which are often called as the second generation
wavelets.

3.1 Vanishing Momenta Wavelet Family
Gaussian wavelets are obtained by taking the derivatives of Gaus-
sian exponent. The order of the derivative corresponds the order
of wavelet itself

First two VMWF wavelets are most popular:

9l(x) = -SC-V2 , g2(x) = (1 - s V " / * .

Gaussian Wavelets of higher orders are able to bring some new
features into the wavelet signal processing. Hereafter we restrict



ourselves by using the second order wavelet only, also referred to as
Mexican Hat wavelet.

There are two types of wavelet transforms, discrete and con-
tinuous. Each of them have its own advantages and shortcomings.
For instance, the discrete wavelet transform (DWT) is faster and al-
lows to reveal exact representation of the signal structure with more
compact resulting set of coefficients. Continuous wavelet transform
(CWT) needs more computational resources but gives a chance to
see the structure in details.

3.2 Lifting Scheme
This type of wavelet transform is referred to as a second genera-
tion wavelet tool. Let us give a short description following Wim
Sweldens l [2] .Consider a signal Sj with 2J samples which we want
to transform into a coarser signal Sj_i and a detail signal dj-i. A
typical case of a wavelet transform built through lifting consists of
three steps: split, predict, and update. Let us discuss each stage in
more detail.

Split: This stage does not do much except for splitting the
signal into two disjoint sets of samples. In our case one group
consists of the even indexed samples 821 and the other group
consists of the odd indexed samples s22+1 • Each group con-
tains half as many samples as the original signal. The splitting
into even and odds is called the Lazy wavelet transform. We
thus built an operator so that

{evenj-\,oddj-\) — Split(sj),

xOne can find a detailed description of the lifting scheme concept and al-
gorithms for some of second generation wavelets in [2] and also on web-site
http://www.cm.bell-labs.com/who/wim/papers/



even even

Spirt U

odd
even

odd
even

b)
odd

Merge

odd

Figure 1: Scheme of one step of lifting decomposition a) and recon-
struction b).

Predict: The even and odd subsets are interspersed. If the
signal has a local correlation structure, the even and odd sub-
sets will be highly correlated. In other words given one of the
two sets, it should be possible to predict the other one with
reasonable accuracy. We always use the even set to predict
the odd one. In the Haar case the prediction is particularly
simple. An odd sample particularly simple. An odd sample
Sj,2i+i will use its left neighboring even sample s^% as its pre-
dictor. We then let the detail dj^ij be the difference between
the odd sample and its prediction, which defines an operator
P such that

dj-i = oddj-i — P{everij-\).

Our purpose is to represent the detail more efficiently. Note
that if the original signal is a constant, then all details are
exactly zero.



Update: One of the key properties of the coâ rser signals is
that they have the same average value as the original signal.
The update stage ensures this by letting

Sj-i = everij-i +

All this can be computed in-place: the even locations can
be overwritten with the averages and the odd ones with the
details. These three stages are depicted in a wiring diagram
in fig. 1, a). We can immediately build the inverse scheme,
see the wiring diagram in fig. 1, b). Again we have three
stages:

Undo update: Given rf,_i and Sj-i we can recover the even
samples by simply subtracting the update information:

everij-i — Sj-i —

• Undo predict: Given everij^i and dj~\ we can recover the
odd samples by adding the prediction information

oddj-.i = dj-i + P(everij-i)

• Merge: Now that we have the even and odd samples we
simply have to zipper them together to recover the original
signal. This is the inverse Lazy wavelet:

he inverse transform is thus always found by reversing the order of
the operations and ipping the signs.
The lifting scheme has a number of algorithmic advantages

• In-place: all calculations can be performed in-place which
can be an important memory savings.



• Efficiency: in many cases the number of floating point op-
erations needed to compute both smooth and detail parts is
reduced since subexpressions are reused.

But perhaps more importantly lifting has some structural ad-
vantages which are both theoretically and practically relevant:

• Inverse Transform: writing the wavelet transform as a se-
quence of elementary predict and update (lifting) steps, it is
immediately obvious what the inverse transform is: simply
run the code backwards. In the classical setting, the inverse
transform can typically only be found with the help of Fourier
techniques.

• Generality: this is the most important advantage. Since
the design of the transform is performed without reference
to Fourier techniques it is very easy to extend it to settings
in which, for example, samples are not placed evenly or con-
straints such as boundaries need to be incorporated. It also
carries over directly to curves, surfaces and volumes.

It is for these reasons that we built our exposition entirely
around the lifting scheme.

The indisputable advantage of it is speed. Moreover, the set of
coefficients obtained after the transformation is of same length as
the source. The inverse transform restores the signal without any
errors, what is not possible with the VMWF wavelets.

However there are some shortcomings of the lifting scheme tech-
nique. The most significant is that it is possible to choose the scale
of the transformation from predefined set only. And it is not pos-
sible to use scales less than 1 in principle.

3.3 Software

Authors have developed an object-oriented C++ software package
implementing both continuous VMWF transform and its very fast
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disctrete version. Besides a LSF package was developed (see [4] for
detailes).

3.4 Problem
Particular tasks of signal processing require their own demands
for the processing tool. Before applying wavelet transform the re-
searcher have to select one from a variety of approaches. We are
trying to test two types of wavelets more in details in order to un-
derstand when each of them is more desirable in a particular task
of signal processing. We should mention that the results obtained
are applicable to wavelet families described above.

4 Data Samples

To compare the different approaches of applying wavelets for data
filtering we generate a number of test data. All the sample signals
are of the length 512. There are several groups of signals, listed
below.

1. Harmonica! signals;

2. Harmonica! signals with noises;

3. Dirac's delta function.

Using these classes of sample data the following characteristics
are examined.

1. Ability of filter to recover signals;

2. Denoising properties;

3. Influence of the phase of the signal;

4. Gain-frequency characteristics (GFC).



4.1 Harmonical Signals
Samples of this class may be grouped into two subclasses.

1. The sum of two sine waves with different frequencies and am-
plitudes. The purpose of the analysis is to split the signal into
two components, those are the different frequency harmonical
signals.

10sin(0.0368a;) + 5sin(0.1223x) (3 periods of low frequency
component and about 10 periods of high frequency one);

10sin(0.0368x) + 5 sin(0.2454z) (3 and approximately 20 pe-
riods);

10 sin(0.0368a;) +5sin(0.3€77x) (3 and approximately 30 pe-
riods).

An example of this type of signal is presented on fig. 2, a).

2. The sum of two components. One of them is the sine wave
with low frequency and is defined on the whole interval [0,
512). The second one is a high frequency sine wave which lives
inside [160, 360] interval only (see fig. 2, b). There are three
versions of this type of sample, with the same frequencies as
above. The wavelet filter has to split those two parts of the
signal.

4.2 Harmonica! Signals with Noise

The source signals are the same as described in previous section.
After the data set is built an additional random value is put to
every point of samples. The distribution law of those random values
is uniform with amplitude varying from 1 to 100. We use both
non-correlated and correlated noise values. In the second case the
correlation vector is (0.25, 0.5, 1, 0.5, 0.25). Figure 3 presents an
example of noisy data - non-correlated noise is applied to samples
from fig. 2.
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Figure 2: Sample signals, the sum of two harmonics.

Figure 3: The same sample signals with added noise.

4.3 Gain-Frequency Characteristics

Let the source signal be a sine wave with fixed amplitude. Running
it through the direct and then the inverse wavelet transforms we
will obtain some new recovered signal. The ratio of their amplitudes
is the gain of the filter at the frequency of the signal. Varying the
frequency we obtain the gain-frequency characteristics (GFC) of
the filter. Gain-frequency characteristics clearly shows the ability
of the filter to pass different frequencies presented in the signal.
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5 Results of Applying Filters

Data samples mentioned in previous sections were passed through
wavelet filters built on both VMWF and LSW wavelet sets. In the
following subsections we will present the results of applying these
filters to sample data.

5.1 Wavelet Spectrum and Skeleton
Wavelet analysis provides the powerful tool which helps to view
the structure of the signal. The set of wavelet coefficients can be
presented as a projection of 3-dimensional surface onto the plane in
a-b axes. Coefficients with higher values are depicted in more light
color while lower ones are darker. The image obtained after such
a projection is called wavelet spectrum. Two examples of wavelet
spectrum of signals from figs. 2 - 3 are shown in fig. 4. One can see
the fine structure of spectrum in the lower part of vertical scalig
axis.

Figure 4: Two examples of wavelet spectrum of signals from figs. 2 -
3.

Being highly informative wavelet spectrum often brings too much
redundant information. To avoid it gray-scaled image is trans-
formed to so-called wavelet skeleton. Lines on the skeleton cor-
respond local maxima in the spectrum.
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Figure 5: Wavelet skeletons of signals, presented in figs. 2, a) and
3, a)

Figures 5, a) and 5, b) present wavelet skeletons of data samples
depicted in figs. 2, a) and 3, a), respectively. Note on the first
spectrum that it clearly shows the positions of maxima of both sine
waves presented in the source. A grid of vertical lines in the bottom
part of the skeleton corresponds to high frequency component, while
lines going higher show the presence of low frequency one.

When the noise is added to the signal, additional curved lines
appear in the small-scale region of the skeleton (see fig. 5).

5.2 VMWF Filter

Here we present some results of applying VMWF filter to data
samples. First we take the sample signal depicted in fig. 2, b) and
pass it through the filter which allows to select components with
scales corresponding gaussian wavelet <?2 at scales 32, 64, 128 and
256. The result is the signal in fig. 5, a). After the sample was
processed at scales 1, 2, 4, 8 and 16 we obtain data as in fig. 6, b).

It is seen that the filter allows to extract the initial parts of
the signal. Thus selecting the scales of wavelet transformation it is
possible to highlight the components with desired scales. Note that
in case of signal consisted of two sine waves (fig.2, a) wavelet-based
extraction works like traditional Fourier filters.
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Figure 6: The result of extracting data from the signals using
VMWF filter.

However with signal in fig. 2, b) simple Fourier methods would
fail. If you need to select high frequency short-lived wave you should
first extract low-frequency wave and then subtract it from the sig-
nal. Wavelet filter allows direct extraction of the requested compo-
nent.

100-

0 109 20S 400 *

Figure 7: Skeleton of the resulted signal after VMWF denoising.

Another application of wavelet filtering is denoising. The proce-
dure of denoising consists of deleting wavelet coefficients with small
amplitude from the set before inverse transform. In fig. 5, a) the
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skeleton of the signal corrupted with noise was presented. Com-
paring this image with the skeleton in fig. 7 we may say, that the
noise is efficiently suppressed. There are only few short lines at
small scales region, which appear at the locations of most signifi-
cant noise.

5.3 LSW Filter

An alternative to VMWF filter is a filter built on lifting scheme
wavelets. In this section we present the results of applying this
type of filter to the sample data.

In figs. 8, a) and 8, b) signals obtained after passing the signal
in fig. 2, a) through the LSW filter are presented. To extract low
frequency component we use scales larger than 32, lower scales are
used to select high frequency feature. Unlike the VMWF filter
LSW one do not work properly at the edge of the signal, note the
downwards initial part in the fig. 8, b).

a) 2OO 3OQ «OO SOQ b) 1OO 2OO 300 4OQ SOQ

Figure 8: The result of extracting data from the signals using LSW
filter.

Denoising abilities of LSW filter are worser of those of VMWF
filter. As it is seen from the fig. 9 where the skeleton of the denoised
data is presented there are much more noise traces left.
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Figure 9: Here presented skeleton of the signal after LSW denoising.

5.4 Gain-Frequency Characteristics

Gain-frequency characteristics of filters based on both VMWF and
LSWT wavelets are shown in figs. 10 and 11, respectively. Note that
VMWF filter provides more flat GFC than LSW filter does. Higher
order gn wavelets give better frequency properties of the filter.

GFC in fig. 9 is obtained for the filter with scales 1 through 256
with the base ao = 21/4 - that is scales are 1, ao, O(j, e^c- Higher
base would damage the flat lookup of the characteristics.

Figure 10: Gain-frequency characteristics of the VMWF filter.

Gain-frequency characteristics of the LSW filter at different
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Figure 11: Gain-frequency characteristics of the LSW filter,

scales are shown in fig. 11. Distinctive peaks appear on it.

6 Conclusion
A comparison of two types of wavelets, namely vanishing momen-
tum wavelets (VMWF) and wavelets based on the lifting scheme
(LSF) is accomplished. It demands to elaborate a set of tests as
a benchmark for data filtering problems and to develope object-
oriented C + + software tools to implement both (continuous and
discrete versions of VMWF transform as well as LSF wavelets trans-
form.

Results of applying these software to the proposed benchmark
tests show that despite of obvious speed advantages of the LSF
wavelets, the VMWF wavelets have better accuracy and gain-frequency
characteristics. Therefore they could be preferable in problems
where more delicate data handling is needed, for example to pre-
serve a fine structure of a processed image.
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Ососков Г.А., Шитов А.Б., Стадник A.B. El 1-2001-38
Сравнительный анализ вейвлетов первого и второго поколений

Предложен многосторонний набор тестовых сигналов для сравнения эф-
фективности и возможностей непрерывного вейвлет-преобразования, осно-
ванного на вейвлетах с нулевыми моментами и вейвлетов второго поколения,
построенных на основе лифтинг-схемы. Тесты заключаются в обработке
различных типов неискаженных и зашумленных сигналов, дельта-функции,
изучении зависимости фазы сигнала и амплитудно-частотных характеристик.
Результаты сравнения позволяют определить преимущества и недостатки
рассмотренных типов вейвлетов.

Работа выполнена в Лаборатории информационных технологий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна., 2001

Ososkov G.A., Shitov A.B., Stadnik A.V. El 1-2001-38
Comparative Study of Wavelets of the First and Second Generation

In order to compare efficiency a comprehensive set of benchmarking tests is
developed, which is used to compare abilities of continuous wavelet transform
of the vanishing momenta type as well as the second generation wavelets con-
structed on the basis of the lifting scheme. It is based on processing of various
types of pure and contaminated harmonic signals, delta-function, study of the sig-
nal phase dependence and the gain-frequency characteristics. The results of a com-
parative multiscale analysis allow one to reveal advantages and flaws of the con-
sidered types of wavelets.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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